【题目】如图,⊙O是△ABC外接圆,直径AB=12,∠A=2∠B.
(1)∠A= °,∠B= °;
(2)求BC的长(结果用根号表示);
(3)连接OC并延长到点P,使CP=OC,连接PA,画出图形,求证:PA是⊙O的切线.
【答案】(1)∠A=60°,∠B=30°;(2)6;(3)见解析
【解析】分析:(1)、不难看出∠C应该是直角,∠A=2∠B,那么这两个角的度数就容易求得了;(2)、直角三角形ABC中,有斜边AB的长,有三角的度数,BC的值就能求出了;(3)、此题实际上是证明PA⊥AB,由图我们不难得出△AOC是等边三角形,那么就容易证得△ABC≌△OPA,这样就能求出PA⊥AB了.
详解:(1)∵∠C=90°,∠A=2∠B, ∴∠A=60°,∠B=30°;
(2)∵AB为直径, ∴∠ACB=90°, 又∵∠B=30°, ∴AC=AB=65.
∴BC==6;
(3)如图,∵OP=2OC=AB, ∵∠BAC=60°,OA=OC, ∴△OAC为等边三角形.
∴∠AOC=60°. 在△ABC和△OPA中,∵AB=OP,∠BAC=∠POA=60°,AC=OA,
∴△ABC≌△OPA. ∴∠OAP=∠ACB=90°. ∴PA是⊙O的切线.
科目:初中数学 来源: 题型:
【题目】如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.
(1)求直线AO的解析式;
(2)求直线CD的解析式;
(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红心食品店想网购一种花生包装袋,在网上搜索了、两家网店(如图所示),已知这两家网店的这种花生包装袋质量相同,请看图回答下列问题:
(1)假若红心食品店想购买个花生包装袋,那么在、两家网店分别需要花多少钱(用含有的式子表示)?(提示:如需付运费时,运费只需付一次,即6元)
(2)红心食品店打算一次购买200个花生包装袋,选择哪家网店更省钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线DE上有一点O,过点O在直线DE上方作射线OC,∠COE=140°,将一直角三角板AOB的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕着点O按每秒10°的速度逆时针旋转一周,设旋转时间为t秒.
(1)当直角三角板旋转到如图2的位置时,OA恰好平分∠COD,求此时∠BOC的度数;
(2)若射线OC的位置保持不变,在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请求出t的取值,若不存在,请说明理由;
(3)若在三角板开始转动的同时,射线OC也绕O点以每秒15°的速度逆时针旋转一周,从旋转开始多长时间,射线OC平分∠BOD.直接写出t的值.(本题中的角均为大于0°且小于180°的角)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,已知P(1,2).
(1)在平面直角坐标系中描出点P(保留画图痕迹);
(2)如果将点P向左平移3个单位长度,再向上平移1个单位长度得到点P',则点P'的坐标为 .
(3)点A在坐标轴上,若S△OAP=2,直接写出满足条件的点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.
(1)求证:△AEF∽△ABC:
(2)求正方形EFMN的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠B=30°,以A为圆心适当长为半径画弧,分别交AC、AB于点M、N,分别以点M、N为圆心,大于MN的长为半径画弧交于点P,作射线AP交BC于点D,再作射线DE交AB于点E,则下列结论错误的是( )
A. ∠ADB=120° B. S△ADC:S△ABC=1:3
C. 若CD=2,则BD=4 D. DE垂直平分AB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将两块直角三角尺的顶点叠放在一起.
(1)若∠DCE=25°,求∠ACB的度数.
(2)若∠ACB=140°,求∠DCE的度数.
(3)猜想∠ACB与∠DCE的关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com