14£®Èçͼ£¬µãA£¨0£¬2£©£¬B£¨4£¬0£©Á½µãµÄ×ø±ê£¬½«¡÷ABOÑØ×Å´¹Ö±ÓÚxÖáµÄÏß¶ÎCDÕÛµþ£¨µãCÔÚxÖáÉÏ£¬µãDÔÚABÉÏ£¬µãD²»ÓëA£¬BÖØºÏ£©£¬Èçͼ£¬Ê¹µãEÂäÔÚxÖáÉÏ£®ÉèµãCµÄ×ø±êΪ£¨x£¬0£©£¬¡÷CDEÓë¡÷ABOÖØµþ²¿·ÖµÄÃæ»ýΪS£®
£¨1£©ÊÔÇó³öSÓëxÖ®¼äµÄº¯Êý¹ØÏµÊ½£¨°üÀ¨×Ô±äÁ¿xµÄȡֵ·¶Î§£©£»
£¨2£©µ±xΪºÎֵʱ£¬SµÄÃæ»ý×î´ó£¿×î´óÖµÊǶàÉÙ£¿
£¨3£©ÊÇ·ñ´æÔÚÕâÑùµÄµãC£¬Ê¹µÃ¡÷ADEΪֱ½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬Ö±½Óд³öµãCµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©OB=4£¬CµãµÄλÖÃÓ¦·ÖÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬µ±CÔÚOBµÄÖеã»òÔÚÖеãÓëBÖ®¼äʱ£¬Öغϲ¿·ÖÊÇ¡÷CDE£»µ±CÔÚOBµÄÖеãÓëOÖ®¼äʱ£¬Öغϲ¿·ÖÊÇÌÝÐΣ¬¾Í¿ÉÒԵõ½º¯Êý½âÎöʽ£®
£¨2£©Çó³öSÓëxÖ®¼äµÄº¯Êý½âÎöʽ£¬¸ù¾Ýº¯ÊýµÄÐÔÖʾͿÉÒԵõ½Ãæ»ýµÄ×îÖµ£®
£¨3£©·Ö¡÷ADEÒÔµãAΪֱ½Ç¶¥µãºÍ¡÷ADEÒÔµãEΪֱ½Ç¶¥µã£¬Á½ÖÖÇé¿ö½øÐÐÌÖÂÛ£®¸ù¾ÝÏàËÆÈý½ÇÐεĶÔÓ¦±ßµÄ±ÈÏàµÈ£¬Çó³öOEµÄ³¤£¬¾Í¿ÉÒԵõ½CµãµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¢ÙµãEÔÚÔ­µãºÍxÖáÕý°ëÖáÉÏʱ£¬Öصþ²¿·ÖÊÇ¡÷CDE£®
ÔòS¡÷CDE=$\frac{1}{2}$BC¡ÁCD=$\frac{1}{2}$£¨4-x£©£¨-$\frac{1}{2}$x+2£©
=$\frac{1}{4}$x2-2x+4£»
µ±EÓëOÖØºÏʱ£¬CE=$\frac{1}{2}$BO=2£¬Ôò2¡Üx£¼4£»
¢Úµ±EÔÚxÖáµÄ¸º°ëÖáÉÏʱ£¬ÉèDEÓëyÖá½»ÓÚµãF£¬ÔòÖØµþ²¿·ÖΪÌÝÐΣ®
¡ß¡÷OFE¡×¡÷OAB
¡à$\frac{OF}{OE}$=$\frac{OA}{OB}$=$\frac{1}{2}$£¬
¡àOF=$\frac{1}{2}$OE£®
ÓÖ¡ßOE=4-2x£¬
¡àOF=$\frac{1}{2}$£¨4-2x£©=2-x£¬
¡àSËıßÐÎCDFO=$\frac{x}{2}$¡Á[2-x+£¨-$\frac{1}{2}$x+2£©]£¬
=-$\frac{3}{4}$x2+2x£®
µ±µãCÓëµãOÖØºÏʱ£¬µãCµÄ×ø±êΪ£¨0£¬0£©
¡à0£¼x£¼2£®
×ۺϢ٢ڵÃS=$\left\{\begin{array}{l}{\frac{1}{4}{x}^{2}-2x+4£¨2¡Üx£¼4£©}\\{-\frac{3}{4}{x}^{2}+2x£¨0£¼x£¼2£©}\end{array}\right.$£»

£¨2£©¢Ùµ±2¡Üx£¼4ʱ£¬S=$\frac{1}{4}$x2-2x+4=$\frac{1}{4}$£¨x-4£©2£¬
¡à¶Ô³ÆÖáÊÇÖ±Ïßx=4
¡ßÅ×ÎïÏß¿ª¿ÚÏòÉÏ£¬
¡àÔÚ2¡Üx£¼4ÖУ¬SËæxµÄÔö´ó¶ø¼õС
¡àµ±x=2ʱ£¬S×î´óÖµ=$\frac{1}{4}$¡Á£¨2-4£©2=1£»
¢Úµ±0£¼x£¼2ʱ£¬S=-$\frac{3}{4}$x2+2x=-$\frac{3}{4}$£¨x-$\frac{4}{3}$£©2+$\frac{4}{3}$£¬
¡à¶Ô³ÆÖáÊÇÖ±Ïßx=$\frac{4}{3}$£¬
¡ßÅ×ÎïÏß¿ª¿ÚÏòÏ£¬
¡àµ±x=$\frac{4}{3}$ʱ£¬SÓÐ×î´óֵΪ$\frac{4}{3}$£®
×ۺϢ٢ڵ±x=$\frac{4}{3}$ʱ£¬SÓÐ×î´óֵΪ$\frac{4}{3}$£»

£¨3£©´æÔÚ£¬µãCµÄ×ø±êΪ£¨$\frac{3}{2}$£¬0£©ºÍ£¨$\frac{5}{2}$£¬0£©£®
¸½£ºÏê½â£º¢Ùµ±¡÷ADEÒÔµãAΪֱ½Ç¶¥µãʱ£¬×÷AE¡ÍAB½»xÖḺ°ëÖáÓÚµãE£¬
¡ß¡÷AOE¡×¡÷BOA
¡à$\frac{EO}{AO}$=$\frac{AO}{BO}$=$\frac{1}{2}$£®
¡ßAO=2£¬
¡àEO=1£¬
¡àµãE×ø±êΪ£¨-1£¬0£©£¬
¡àµãCµÄ×ø±êΪ£¨$\frac{3}{2}$£¬0£©£»
¢Úµ±¡÷ADEÒÔµãEΪֱ½Ç¶¥µãʱ£¬
ͬÑùÓС÷AOE¡×¡÷BOA£¬Ôò$\frac{OE}{AO}$=$\frac{OA}{BO}$=$\frac{1}{2}$£¬
¡àEO=1£¬
¡àE£¨1£¬0£©£¬
¡àµãCµÄ×ø±ê£¨$\frac{5}{2}$£¬0£©£¬
×ۺϢ٢ÚÖªÂú×ãÌõ¼þµÄ×ø±êÓУ¨$\frac{3}{2}$£¬0£©ºÍ£¨$\frac{5}{2}$£¬0£©£®

µãÆÀ ´ËÌâ×ۺϿ¼²éÁËÏàËÆ×ÛºÏÌ⣮ÆäÖÐÉæ¼°µ½ÁË´ý¶¨ÏµÊý·¨Çó¶þ´Îº¯ÊýµÄ½âÎöʽ¡¢¶þ´Îº¯Êý×îÖµµÄÇ󷨡¢ÏàËÆÈý½ÇÐεÄÅж¨ÓëÐÔÖÊÒÔ¼°¶à±ßÐÎÃæ»ýµÄÇ󷨵È֪ʶµã£®´ËÌâÄѶȽϴó£¬×¢ÒâÕÆÎÕº¯Êý˼Ïë¡¢·ÖÀàÌÖÂÛ˼ÏëÓëÊýÐνáºÏ˼ÏëµÄÓ¦Óã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2015-2016ѧÄêÄÚÃɹŰÍÑåÄ×¶ûÊÐÁÙºÓÇøÆßÄê¼¶ÏÂѧÆÚÆÚÄ©¿¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¶¡¶¡²Î¼ÓÁËÒ»´ÎÖÇÁ¦¾ºÈü£¬¹²»Ø´ðÁË30µÀÌ⣬ÌâÄ¿µÄÆÀ·Ö±ê×¼ÊÇÕâÑùµÄ£º´ð¶ÔÒ»Ìâ¼Ó5·Ö£¬Ò»Ìâ´ð´í»ò²»´ðµ¹¿Û1·Ö£®Èç¹ûÔÚÕâ´Î¾ºÈüÖж¡¶¡µÄµÃ·ÖÒª³¬¹ý100·Ö£¬ÄÇôËûÖÁÉÙÒª´ð¶Ô_____Ìâ.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®½â·½³Ì£º
£¨1£©2£¨x-3£©=3x£¨x-3£©£»
£¨2£©x2-2x=2x+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªµãA£¨-1£¬0£©¡¢B£¨3£¬0£©£¬µãCÔÚyÖáÉÏ£¬ÇÒ¡÷ABCµÄÃæ»ýΪ6£¬ÇóµãCµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®Èçͼ£¬¡ÏAOB=90¡ã£¬½«Rt¡÷OABÈÆµãO°´ÄæÊ±Õë·½ÏòÐýתÖÁRt¡÷OA¡äB¡ä£¬Ê¹µãBÇ¡ºÃÂäÔÚ±ßA¡äB¡äÉÏ£®ÒÑÖªtanB=2£¬OB=5£¬ÔòBB¡ä=2$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬¶þ´Îº¯ÊýµÄͼÏóÓëxÖáÏཻÓÚA£¨-3£¬0£©¡¢B£¨1£¬0£©Á½µã£¬ÓëyÖáÏཻÓÚµãC£¨0£¬3£©£¬µãC¡¢DÊǶþ´Îº¯ÊýͼÏóÉϵÄÒ»¶Ô¶Ô³Æµã£¬Ò»´Îº¯ÊýµÄͼÏó¹ýµãB¡¢D£®
£¨1£©Çó¶þ´Îº¯ÊýµÄ½âÎöʽ£» 
£¨2£©µ±-3¡Üx¡Ü0ʱyµÄȡֵ·¶Î§ÊÇ0¡Üy¡Ü4£»
£¨3£©¸ù¾ÝͼÏó¿ÉÖª£ºµ±Ò»´Îº¯ÊýֵСÓÚµÈÓÚ¶þ´Îº¯Êýֵʱ£¬xµÄȡֵ·¶Î§ÊÇ-2¡Üx¡Ü0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬ÒÑÖªÕý·½ÐÎABCD±ß³¤Îª6£¬½«ÆäÕÛµþ£¬Ê¹µãDÂäÔÚAB±ßµÄÖеãE´¦£¬ÕÛºÛΪFH£¬µãCÂäÔÚQ´¦£¬EQÓëBC½»ÓÚµãG£¬Ôò¡÷EBGµÄÖܳ¤ÊÇ£¨¡¡¡¡£©
A£®15B£®12C£®8D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Åж¨Á½¸öÈý½ÇÐÎÈ«µÈµÄÒ»°ã·½·¨ÓÐSSS£¬SAS£¬AAS£¬ASA£¬¶ÔÓÚÁ½¸öÖ±½ÇÈý½ÇÐλ¹ÓÐHL£®£¨ÏÞÓ÷ûºÅ±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®½âÏÂÁз½³Ì
£¨1£©x2+6=5x                       
£¨2£©£¨x+1£©2=4x2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸