【题目】如图,∠ABC=45°,△ADE是等腰直角三角形,AE=AD,顶点A、D分别在∠ABC的两边BA、BC上滑动(不与点B重合),△ADE的外接圆交BC于点F,点D在点F的右侧,O为圆心.
(1)求证:△ABD≌△AFE
(2)若AB=4,8<BE≤4,求⊙O的面积S的取值范围.
【答案】(1)证明见解析(2)16π<S≤40π
【解析】试题分析:(1)利用同弧所对的圆周角相等得出两组相等的角,再利用已知AE=AD,得出三角形全等;(2)利用△ABD≌△AFE,和已知条件得出BF的长,利用勾股定理和8<BE≤4,求出EF,DF的取值范围, ,所以利用二次函数的性质求出最值.
试题解析:(1)连接EF,
∵△ADE是等腰直角三角形,AE=AD,
∴∠EAD=90°,∠AED=∠ADE=45°,
∵ ,
∴∠ADE=∠AFE=45°,
∵∠ABD=45°,
∴∠ABD=∠AFE,
∵,
∴∠AEF=∠ADB,
∵AE=AD,
∴△ABD≌△AFE;
(2)∵△ABD≌△AFE,
∴BD=EF,∠EAF=∠BAD,
∴∠BAF=∠EAD=90°,
∵ ,
∴BF==8,
设BD=x,则EF=x,DF=x﹣8,
∵BE2=EF2+BF2, <BE≤ ,
∴128<EF2+82≤208,
∴8<EF≤12,即8<x≤12,
则=,
∵>0,
∴抛物线的开口向上,
又∵对称轴为直线x=4,
∴当8<x≤12时,S随x的增大而增大,
∴16π<S≤40π.
科目:初中数学 来源: 题型:
【题目】计算
(1) ﹣(+3.7)+(+ )﹣(﹣1.7)
(2)( ﹣ ﹣ + )×(﹣24)
(3)﹣32×(﹣2)+42÷(﹣2)3﹣|﹣22|
(4)﹣27÷2 × .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为a cm的正方形内,截去两个以正方形的边长a cm为直径的半圆,(结果保留π)
(1)图中阴影部分的周长为cm.
(2)图中阴影部分的面积为cm2 .
(3)当a=4时,求出阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据给出的数轴及已知条件,解答下面的问题:
(1)已知点A,B,C表示的数分别为1,﹣ ,﹣3观察数轴,与点A的距离为3的点表示的数是 , B,C两点之间的距离为;
(2)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是;若此数轴上M,N两点之间的距离为2015(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则M,N两点表示的数分别是:M , N;
(3)若数轴上P,Q两点间的距离为m(P在Q左侧),表示数n的点到P,Q两点的距离相等,则将数轴折叠,使得P点与Q点重合时,P,Q两点表示的数分别为:P , Q(用含m,n的式子表示这两个数).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com