【题目】如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上的一个动点(点A与点B不重合).在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C.连接OC、CD,设点A的横坐标为t.
(1)用含t的式子表示点E的坐标为_______;
(2)当t为何值时,∠OCD=180°?
(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.
【答案】(1)E(,8);(2);(3).
【解析】
试题分析:(1)由AD=OB=8,得到AE=ED=4,再由点A的横坐标为t,得到点E的坐标;
(2)当∠OCD=180°时,如图1,由EC∥BO,得到,即EC=,再由△AEC∽△OBA,得到,从而EC=,故=,解方程即可求出t的值;
(3)当C与F重合时,由(2)得:=8,解得t=16,故分两种情况讨论:①,②.由于,OF=BE=,只需要表示出CF代入公式即可.
试题解析:(1)∵AD=OB=8,∴AE=ED=4,∵点A的横坐标为t,∴E(,8);
(2)当∠OCD=180°时,如图1,∵EC∥BO,∴,∴,∴EC=,∵AC⊥OA,∴∠1+∠2=90°,∵∠2+∠3=90°,∴∠1=∠3,∵∠AEC=∠ABO,∴△AEC∽△OBA,∴,∴,∴EC=,∴=,∴,解得:或(舍去),∴t=;
(3)当C与F重合时,由(2)得:=8,解得t=16,∴分两种情况讨论:①,②.
①当时,如图2,由(2)得:EC=,则CF=,∵OF=BE=,∴,即;
②当时,如图3,由(2)得:EC=,则CF=,∵OF=BE=,
∴,即;
综上所述:.
科目:初中数学 来源: 题型:
【题目】【阅读】
我们分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,
其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M﹣N,若M﹣N>0,则M>N;若M﹣N=0,则M=N;若M﹣N<0,则M<N.
【运用】
利用“作差法”解决下列问题:
(1)小丽和小颖分别两次购买同一种商品,小丽两次都买了m千克商品,小颖两次购买商品均花费n元,已知第一次购买该商品的价格为a元/千克,第二次购买该商品的价格为b元/千克(a,b是整数,且a≠b),试比较小丽和小颖两次所购买商品的平均价格的高低.
(2)奶奶提一篮子玉米到集贸市场去兑换大米,每2kg玉米兑换1kg大米,商贩用秤称得连篮子带玉米恰好20kg,于是商贩连篮子带大米给奶奶共10kg,在这个过程中谁吃了亏?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在钝角△ABC中,点D是BC的中点,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形ABE和等腰直角三角形ACF,M、N分别为AB、AC的中点,连接DM、DN、DE、DF、EM、EF、FN.求证:
(1)△EMD≌△DNF;
(2)△EMD∽△EAF;
(3)DE⊥DF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合题:探索发现规律拓展应用题
(1)如图①,∠CEF=90°,点B在射线EF上,AB∥CD,若∠ABE=130°,求∠C的度数;
(2)如图②,把“∠CEF=90°”改为“∠CEF=120°”,点B在射线EF上,AB∥CD.猜想∠ABE与∠C的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,∠C=90°,D、E、F分别为AB、BC、AC边上的中点,AC=4cm,BC=6cm,那么四边形CEDF为 , 它的边长分别为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=3x2先向右平移1个单位长度,再向上平移4个单位长度,平移后抛物线的函数表达式是( )
A. y=3(x+1)2+4B. y=3(x﹣1)2+4
C. y=3(x+1)2﹣4D. y=3(x﹣1)2﹣4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com