【题目】内接于圆,且,圆的半径等于,点到距离等于,则长为________.
【答案】或
【解析】
按照圆心在三角形内部和外部两种情况,利用垂径定理,勾股定理分别计算.
解:
①当圆心在三角形内部时(如图1),
连接AO并延长交BC于D点,
∵AB=AC,
∴AD⊥BC,
依题意,得AO=BO=6,OD=2,
由勾股定理,得AB2-AD2=BO2-OD2=BD2,
AB2-(6+2)2=62-22,解得AB=4;
②当圆心在三角形外部时(如图2),
连接AO交BC于D点,
∵AB=AC,
∴AD⊥BC,
依题意,得AO=BO=6,OD=2,
由勾股定理,得AB2-AD2=BO2-OD2=BD2,
AB2-(6-2)2=62-22,解得AB=4.
∴AB=4或4cm.
故本题答案为:4或4.
科目:初中数学 来源: 题型:
【题目】已知抛物线的表达式是y=ax2+(1﹣a)x+1﹣2a(a为不等于0的常数),上述抛物线无论a为何值始终经过定点A和定点B;A为x轴上的点,B为第一象限内的点.
(1)请写出A,B两点的坐标:A( ,0);B( , );
(2)如图1,当抛物线与x轴只有一个公共点时,求a的值;
(3)如图2,当a<0时,若上述抛物线顶点是D,与x轴的另一交点为点C,且点A,B,C,D中没有两个点相互重合.
求:①△ABC能否是直角三角形,为什么?
②若使得△ABD是直角三角形,请你求出a的值.(求出1个a的值即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:在平面直角坐标系xOy中,如果将点P绕点T(0,t)(t>0)旋转180°得到点Q,那么称线段QP为“拓展带”,点Q为点P的“拓展点”.
(1)当t=3时,点(0,0)的“拓展点”坐标为 ,点(﹣1,1)的“拓展点”坐标为 ;
(2)如果 t>1,当点M(2,1)的“拓展点”N在函数y=﹣的图象上时,求t的值;
(3)当t=1时,点Q为点P(2,0)的“拓展点”,如果抛物线 y=(x﹣m)2﹣1与“拓展带”PQ有交点,求m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x+3与两坐标轴交于A、B两点,抛物线y=﹣x2+bx+c过A、B两点,且交x轴的正半轴于点C.
(1)求A、B两点的坐标;
(2)求抛物线的解析式和点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等腰中,,直线过点且.是上一点,过作垂足为,过作垂足为,已知.
(1)如图①,在直线上有一点,连接,且,求证:;
(2)如图②,将沿方向平移,分别交于,两点,当时,求的面积;
(3)如图③,设直线从点出发沿方向平移的速度为每秒1个单位,与交于点,同时有一动点从点出发以相同的速度向点运动,过作交于,设运动时间为,当到达点时所有运动停止,问是否存在以、、为顶点的三角形是等腰三角形?若存在,直接写出的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图函数y1=kx+b的图象与y2=mx的图象交于点P(2,1),点P是线段AB中点,与x轴正半轴交于点A与y轴交于点 B.
(1)A点坐标是 ,b= ;
(2)根据图象解答:
①解方程组
②解不等式组
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,、、所对的边分别为、、
(1) ,,则________________________;
(2) ,,则_______________________;
(3) ,,则_______________________;
(4) ,,则_______________________;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋中装有3个带号码的球,球号分别为2,3,4,这些球除号码不同外其它均相同。甲、乙、两同学玩摸球游戏,游戏规则如下:
先由甲同学从中随机摸出一球,记下球号,并放回搅匀,再由乙同学从中随机摸出一球,记下球号。将甲同学摸出的球号作为一个两位数的十位上的数,乙同学的作为个位上的数。若该两位数能被4整除,则甲胜,否则乙胜.
问:这个游戏公平吗?请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com