精英家教网 > 初中数学 > 题目详情
自去年3月西双版纳州启动农村义务教育学生营养改善计划以来,某校根据上级要求配备了一批营养早餐.某天七年级(1)班分到牛奶、面包共7件,每件牛奶24元,每件面包16元,共需144元.求这天早上该班分到多少件牛奶,多少件面包.
考点:一元一次方程的应用
专题:
分析:设这天早上该班分到x件牛奶,则分到(7-x)件面包,根据“每件牛奶24元,每件面包16元,共需144元”列出方程,解方程即可.
解答:解:设这天早上该班分到x件牛奶,则分到(7-x)件面包,根据题意得
24x+16(7-x)=144,
解得x=4.
答:这天早上该班分到4件牛奶,3件面包.
点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图∠1=∠2,∠C=∠D,求证:AB•AD=AC•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

利用乘法公式的变形解决下面的问题:
已知
2015+x
+
5+x
=2
,求
2015+x
-
5+x
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果m,n都是整数,且a>1,则(anm和(amn是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,若∠B=2∠C,AD⊥BC,E为BC边中点,求证:AB=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知(x+y)x•(y+x)y=(x+y)5,且(x-y)x+5•(x-y)5-y=(x-y)9,能否求出(x-y)x+y的值?若能,请求出其值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

将连续奇数按下面方式排列:用一个如图所示的平行四边行框出九个数,能否使框出的九个自然数之和等于(1)1998;(2)2295;(3)2601?若能,请求出最小的数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知a2+2a-1=0,求a2+
1
a2
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

若不等式(4m-n)x+3m-4n<0的解为x<2,则(m-4n)x+2m-3n>0的解为
 

查看答案和解析>>

同步练习册答案