【题目】如图,已知二次函数的图像与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.
(1)求线段BC的长;
(2)当0≤y≤3时,请直接写出x的范围;
(3)点P是抛物线上位于第一象限的一个动点,连接CP,当∠BCP=90o时,求点P的坐标.
【答案】(1)5 ;(2),;(3)点P坐标为(,).
【解析】
(1)分别求出点B和点C的坐标,再运用勾股定理即可求出BC的长;
(2)求出y=0和y=3时相应的x的值,结合函数的图象即可得到答案;
(3)过点P作PD⊥y轴,设点P坐标为(x, ),则点D坐标为(0, ),表示出PD,CD,证明△PDC∽△COB,得出,列方程求解即可.
(1)当x=0时,y=3,
∴C(0,3),
∴OC=3
当y=0时,解得x1=-1,x2=4
∴A(-1,0),B(4,0),
∴OA=1,OB=4
在Rt△BOC中,BC==5;
(2) 当y=0时,解得x1=-1,x2=4
当y=3时,解得x1=0,x2=4
∴当0≤y≤3时,,
(3)过点P作PD⊥y轴
设点P坐标为(x, ),则点D坐标为(0, )
∴PD=x,CD=-3=/p>
∵∠BCP=90°,
∴∠PCD+∠BCO=90°,
∵∠PCD+∠CPD=90°,
∴∠BCO=∠CPD
∵∠PDC=∠BOC=90°,
∴△PDC∽△COB
∴,
∴,
∴x=或x=0(舍去)
当x=时,y=
∴点P坐标为(,).
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在RtABC中,∠C=90,AC=8,BC=6,O为ABC的内切圆,OA,OB与O分别交于点D,E,则劣弧DE的长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生;
(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;
(3)求户外活动时间的众数和中位数是多少;
(4)本次调查中学生参加户外活动的平均时间是否符合要求,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为满足市场需求,新生活超市在端午节前夕购进价格为元/个的粽子,根据市场预测,该品牌粽子每个售价元时,每天能出售个,并且售价每上涨元,其销售量将减少个,为了维护消费者利益,物价部门规定,该品牌粽子的售价不能超过进价的.
(1)请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为元.
(2)定价为多少时每天的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线l与⊙O相离,OA⊥ 于点A,与⊙O相交于点P,OA=5.C是直线上一点,连结CP并延长交⊙O于另一点B,且AB=AC.
(1)求证:AB是⊙O的切线;
(2)若⊙O的半径为3,求线段BP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg,且不高于180元/kg,经销一段时间后得到如下数据:
设y与x的关系是我们所学过的某一种函数关系.
(1)写出y与x的函数关系式,并指出自变量x的取值范围;
(2)当销售单价为多少时,销售利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.
(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;
(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?
(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com