分析 (1)由AE=CF得AF=EC,可以根据HL得到△ABF≌△CDE即可证明.
(2)结论成立,证明方法类似(1)略.
解答 (1)证明∵AE=CF,
∴AF=EC,![]()
∵BF⊥AC于F,DE⊥AC于E,
∴∠AFB=∠DEC=90°,
在RT△ABF和RT△CDE中,
$\left\{\begin{array}{l}{AB=CD}\\{AF=CE}\end{array}\right.$,
∴△ABF≌△CDE,
∴BF=DE,
在△BFO和△DEO中,
$\left\{\begin{array}{l}{∠BOF=∠DOE}\\{∠BFO=∠DEO}\\{BF=DE}\end{array}\right.$,
∴△BFO≌△DEO,
∴BO=OD.
(2)如图2结论不变,理由如下,
证明∵AE=CF,
∴AF=EC
∵BF⊥AC于F,DE⊥AC于E,![]()
∴∠AFB=∠DEC=90°,
在RT△ABF和RT△CDE中,
$\left\{\begin{array}{l}{AB=CD}\\{AF=CE}\end{array}\right.$,
∴△ABF≌△CDE,
∴BF=DE,
在△BFO和△DEO中,
$\left\{\begin{array}{l}{∠BOF=∠DOE}\\{∠BFO=∠DEO}\\{BF=DE}\end{array}\right.$,
∴△BFO≌△DEO,
∴BO=OD.
点评 本题考查全等三角形的判定和性质,解题的关键是两次利用全等三角形,属于中考常考题型.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ①②④ | B. | ①②⑤ | C. | ②③⑤ | D. | ①②③⑤ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com