精英家教网 > 初中数学 > 题目详情
13.如图,已知矩形OABC,A(4,0),C(0,4),动点P从点A出发,沿A-B-C-O的路线匀速运动,设动点P的运动路程为t,△OAP的面积为S,则下列能大致反映S与t之间关系的图象是(  )
A.B.C.D.

分析 分三段求解:①当P在AB上运动时;②当P在BC上时;③当P在CO上时;分别求出S关于t的函数关系式即可选出答案.

解答 解:∵A(4,0)、C(0,4),
∴OA=AB=BC=OC=4,
①当P由点A向点B运动,即0≤t≤4,S=$\frac{1}{2}$OA•AP=2t;
②当P由点A向点B运动,即4<t≤8,S=$\frac{1}{2}$OA•AP=8;
③当P由点A向点B运动,即8<t≤12,S=$\frac{1}{2}$OA•AP=2(12-t)=-2t+24;
结合图象可知,符合题意的是A.
故选:A.

点评 本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S关于t的函数关系式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.如图,已知抛物线的对称轴为直线l:x=4,且与x轴交于点A(2,0),与y轴交于点C(0,2).
(1)求抛物线的解析式;
(2)试探究在此抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;
(3)以AB为直径作⊙M,过点C作直线CE与⊙M相切于点E,CE交x轴于点D,求直线CE的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

4.抛物线y=ax2+b+c的部分图象如图所示,则当y<0时,x的取值范围是x<-1或x>3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知在△ABC中,∠ABC=90°,AB=6,BC=8.点Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图1)或线段AB的延长线(如图2)于点P.
(1)当点P在线段AB上时,求证:△APQ∽△ACB;
(2)当△PQB是等腰三角形时,求AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,直角梯形OABC的直角顶点O是坐标原点,PA,OC分别在x轴、y轴正半轴上,OA∥BC,D是BC上一点,BD=$\frac{1}{4}OA$=$\sqrt{2}$,AB=3,∠OAB=45°,E、F分别是线段OA、AB上的两动点,且始终保持∠DEF=45°.
(1)直接写出D点的坐标;
(2)设OE=x,AF=y,试确定y与x之间的函数关系;
(3)当△AEF时等腰三角形时,求出△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.等腰△ABC底边BC=8cm,腰长AB=5cm,一动点P在底边上从点B开始向点C以1cm/秒的速度运动,当点P运动到PA与腰垂直的位置时,那么点P运动的时间为1.75或6.25 秒.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.观察、思考与验证
(1)如图1是一个重要公式的几何解释,请你写出这个公式(a+b)2=a2+2ab+b2
(2)如图2所示,∠B=∠D=90°,且B,C,D在同一直线上.试说明:∠ACE=90°;
(3)伽菲尔德(1881年任美国第20届总统)利用(1)中的公式和图2证明了勾股定理(发表在1876年4月1日的《新英格兰教育日志》上),请你写出验证过程.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.a,b,c≠0,且a($\frac{1}{b}$+$\frac{1}{c}$)+b($\frac{1}{c}$+$\frac{1}{a}$)+c($\frac{1}{a}$+$\frac{1}{b}$)=-3,若a,b,c的倒数之和不为0,则a+b+c=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知$\sqrt{a-1}+(b+3)^{2}$=0,则M(a,b)关于x轴对称的点的坐标为(1,3).

查看答案和解析>>

同步练习册答案