【题目】函数y= 与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是( )
A.
B.
C.
D.
【答案】D
【解析】解:A、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,A不符合题意.
B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,B不符合题意;
C、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,C不符合题意;
D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,抛物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,D符合题意;
所以答案是:D.
【考点精析】认真审题,首先需要了解反比例函数的图象(反比例函数的图像属于双曲线.反比例函数的图象既是轴对称图形又是中心对称图形.有两条对称轴:直线y=x和 y=-x.对称中心是:原点),还要掌握二次函数的图象(二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点)的相关知识才是答题的关键.
科目:初中数学 来源: 题型:
【题目】我们经常利用图形描述问题和分析问题.借助直观的几何图形,把问题变得简明、形象,有助于探索解决问题的思路.
(1)在整式乘法公式的学习中,小明为了解释某一公式,构造了几何图形,如图1所示,先画了边长为a,b的大小两个正方形,再延长小正方形的两边,把大正方形分割为四部分,并分别标记为Ⅰ,Ⅱ,Ⅲ,Ⅳ,然后补出图形Ⅴ.显然图形Ⅴ与图形Ⅳ的面积相等,所以图形Ⅰ,Ⅱ,Ⅴ的面积和与图形Ⅰ,Ⅱ,Ⅳ的面积和相等,从而验证了公式.则小明验证的公式是 ;
(2)计算:(x+a)(x+b)= ;请画图说明这个等式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线.
(1)如图1,直接写出,和之间的数量关系.
(2)如图2,,分别平分,,那么和有怎样的数量关系?请说明理由.
(3)若点E的位置如图3所示,,仍分别平分,,请直接写出和的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计图如下(未完成),解答下列问题:
(1)若A组的频数比B组小24,求频数分布直方图中的、的值;
(2)扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数分布直方图;
(3)若成绩在80分以上为优秀,全校共有2000名学生,估计成绩优异的学生有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形OABC的两条边OA、OC分别在y轴和x轴上,已知点A(0,3)、点C(-4,0).
(1)若把矩形OABC沿直线DE折叠,使点C落在点A处,直线DE与OC、AC、AB的交点分别为D、F、E,求折痕DE的长;
(2)若点P在x轴上,在平面内是否存在点Q,使以P、D、E、Q为顶点的四边形是菱形?若存在,则请直接写出点Q的坐标;若不存在,请说明理由;
(3)如图2,若M为AC边上的一动点,在OA上取一点N(0,1),将矩形OABC绕点O顺时针旋转一周,在旋转的过程中,M的对应点为M1,请直接写出NM1的最大值和最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com