精英家教网 > 初中数学 > 题目详情

【题目】八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:

月均用水量xt

频数(户)

频率

0x≤5

6

0.12

5x≤10

m

0.24

10x≤15

16

0.32

15x≤20

10

0.20

20x≤25

4

n

25x≤30

2

0.04

请根据以上信息,解答以下问题:

1)直接写出频数分布表中的mn的值并把频数直方图补充完整;

2)求出该班调查的家庭总户数是多少?

3)求该小区用水量不超过15的家庭的频率.

【答案】(1)m=12,n=0.08;(2)50;(3)0.68.

【解析】

1)根据任意一组频数和频率即可得出总频数,即总频数为,即可得出m=12,进而求得n=0.08;

补充完整的频数直方图见详解;

2)根据任意一组频数和频率即可得出总频数,即总频数为

3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.

解:(1)∵频数为6,频率为0.12

总频数为

∴m=50-6-16-10-4-2=12

n=4÷50=0.08

数据求出后,即可将频数直方图补充完整,如下图所示:

2)根据(1)中即可得知,总频数为

答:该班调查的家庭总户数是50户;

3)根据统计图表,该小区用水量不超过15的家庭的频率即为0.12+0.24+0.32=0.68.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,数轴上点AB表示的有理数分别为﹣63,点P是射线AB上一个动点(不与点AB重合).M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.

1)若点P表示的有理数是0,那么MN的长为   ;若点P表示的有理数是6,那么MN的长为   

2)点P在射线AB上运动(不与点AB重合)的过程中,MN的长是否发生改变?若不改变,请写出求MN的长的过程;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形中,以点为圆心,长为半径画弧交于点,再分别以点为圆心,大于二分之一长为半径画弧,两弧交于点,连接并延长交于点,连接.

1)四边形__________; (填矩形、菱形、正方形或无法确定)

2)如图,相交于点,若四边形的周长为,求的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合数轴与绝对值的知识回答下列问题:

一般地,数轴上表示数m和数n的两点之间的距离公式为|mn|

1)例如:数轴上表示41的两点之间的距离为|41|=   

数轴表示5和﹣2的两点之间的距离为|5﹣(﹣2|=|5+2|=   

2)数轴上表示数a的点与表示﹣4的点之间的距离表示为   

数轴上表示数a的点与表示2的点之间的距离表示为   

若数轴上a位于﹣42之间,则|a+4|+|a2|的值为   

3)当a=   时,|a+5|+|a1|+|a4|的值最小,最小值为   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线ACBD相交于点O.将∠COB绕点O顺时针旋转,设旋转角为α0α90°),角的两边分别与BCAB交于点MN,连接DMCNMN,下列四个结论:①∠CDM=∠COM;②CNDM;③CNB≌△DMC;④AN2+CM2MN2;其中正确结论的个数是(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】蒙蒙和贝贝都住在M小区,在同一所学校读书.某天早上,蒙蒙730M小区站乘坐校车去学校,途中停靠了两个站点才到达学校站点,且每个站点停留2分钟,校车在每个站点之间行驶速度相同;当天早上,贝贝738M小区站乘坐出租车沿相同路线出发,出租车匀速行驶,结果比蒙蒙乘坐的校车早2分钟到学校站点.他们乘坐的车辆从M小区站出发所行驶路程y(千米)与校车离开M小区站的时间x(分)之间的函数图象如图所示.

1)求图中校车从第二个站点出发时点B的坐标;

2)求蒙蒙到达学校站点时的时间;

3)求贝贝乘坐出租车出发后经过多少分钟追上蒙蒙乘坐的校车,并求此时他们距学校站点的路程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点Cx轴的正半轴上,AB边交y轴于点HOC4,∠BCO60°

1)求点A的坐标

2)动点P从点A出发,沿折线ABC的方向以2个单位长度秒的速度向终点C匀速运动,设△POC的面积为S,点P的运动时间为t秒,求St之间的函数关系式(要求写出自变量t的取值范围);

3)在(2)的条件下,直接写出当t为何值时△POC为直角三角形.

  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只小虫从点A出发向北偏西30°方向,爬行了3cm到点B,再从点B出发向北偏东60°爬了3cm到点C

1)试画图确定ABC的位置;

2)从图上量出点C到点A的距离(精确到01cm);

3)指出点C在点A的什么方位?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算题

112(16)+(4)5

2

3

4(8a-7b)-(4a-5b)

5

6)先化简再求值, 其中

查看答案和解析>>

同步练习册答案