【题目】已知,如图,AC平分∠BAD,CE⊥AB于E,CD⊥AD于F,且BC=DC.
(1)BE与DF是否相等?请说明理由;
(2)若DF=1,AD=3,求AB的长;
(3)若△ABC的面积是23,△ADC面积是18,直接写出△BEC的面积.
【答案】(1)相等,理由见解析;(2)5;(3)2.5.
【解析】
(1)根据角平分线的性质可知,CF=CE,再结合已知条件利用HL证明Rt△BCE与Rt△DCF全等,最后利用全等三角形的性质解答即可;
(2)根据已知条件证明Rt△ACE≌Rt△ACF,所以AF=AE,因此AB=AE+BE=AF+BE,即可求出答案;
(3)根据(1)(2)可知,S△BCE=S△DCF,S△ACE=S△ACF,所以,即可求出答案.
解:(1)相等,
∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,
∴CE=CF,
在Rt△BCE与Rt△DCF中,,
∴Rt△BCE≌Rt△DCF(HL),
∴BE=DF;
(2)∵Rt△BCE≌Rt△DCF,
∴DF=EB,CE=CF,CE⊥AB于E,CF⊥AD于F,
在Rt△ACE与Rt△ACF中,,
∴Rt△ACE≌Rt△ACF(HL),
∴AF=AE,
∵DF=1,AD=3,
∴AB=AF+BE=AD+DF+BE=5;
(3)∵Rt△BCE≌Rt△DCF,
∴S△BCE=S△DCF,
∵△ABC的面积是23,△ADC面积是18,
∴△BEC的面积=.
科目:初中数学 来源: 题型:
【题目】在期末考试来临之际,同学们都进入紧张的复习阶段,为了了解同学们晚上的睡眠情况,现对年级部分同学进行了调查统计,并制成如下两幅不完整的统计图:(其中A代表睡眠时间8小时左右,B代表睡眠时间6小时左右,C代表睡眠时间4小时左右,D代表睡眠时间5小时左右,E代表睡眠时间7小时左右),其中扇形统计图中“E”的圆心角为90°,请你结合统计图所给信息解答下列问题:
(1)共抽取了 名同学进行调查,同学们的睡眠时间的中位数是 小时左右,并将条形统计图补充完整;
(2)请你估计年级每个学生的平均睡眠时间约多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在长方形ABCD中,AB>BC,把长方形沿对角线AC所在直线折叠,使点B落在点E处,AE交CD于点F,连接DE
求证:(1)△AED≌△CDE
(2)△EFD是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点C(0,6)的直线AC与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动,试解决下列问题:
(1)求直线AC的解析式;
(2)求△OAC的面积;
(3)是否存在点M、使△OMC的面积是△OAC的面积的?若存在,求出此时点M的坐标;若不存在,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点为直线上一点,将一副三角板如图摆放,其中两锐角顶点放在点处,直角边,分别在射线,上,且,.
(1)将图1中的三角板绕点按逆时针方向旋转至图2的位置,使得落在射线上,此时三角板旋转的角度为 度;
(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得在的内部,若,则的度数为 度;
(3)在上述直角三角板从图l旋转到图3的位置的过程中,若三角板绕点按每秒5°的速度旋转,当直角三角板的斜边所在的直线恰好平分时,求此时三角板绕点的运动时间的值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点在数轴上表示的数是,且满足,多项式是五次四项式.
(1)则的值为 ,的值为 ,的值为 ;
(2)已知点是数轴上的两个动点,点从点出发,以每秒3个单位的速度向右运动,同时点从点出发,以每秒4个单位的速度向左运动:
①若点和点经过秒后,在数轴上的点处相遇,求的值和点所表示的数;
②若点运动到点处,点再出发,则点运动几秒后两点之间的距离为8个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE:CE=3:2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE= ;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径;
(4)如图2,将△AEC沿直线AE翻折,得到△AEC',连结AC',如果∠ABF=∠CBC′,求t值.(直接写出答案,不要求解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中点A、点B两点间的距离是24,点B、点C两点间的距离是10.
(1)若以点C为原点,求a+b+c的值;
(2)若点O是原点,当点O与点B之间的距离为19时,求a+c的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%.
(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?
(2)今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两种型号设备共8台用于二期工程的污水处理,预算本次购买资金不超过84万元;实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,预计二期工程完成后每月将产生不少于1300吨污水,请你求出用于二期工程的污水处理设备的所有购买方案.
(3)经测算:每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.在(2)中的方案中,哪种购买方案使得设备的各种维护费和电费总费用最低?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com