【题目】在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).
请解答下列问题:
(1)请补全条形统计图和扇形统计图;
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?
(3)若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?
(4)学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?
【答案】(1)详见解析;(2)40%;(3)105;(4).
【解析】
(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;
(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;
(3)根据样本估计总体的方法计算即可;
(4)利用概率公式即可得出结论.
(1)由条形图知,男生共有:10+20+13+9=52人,
∴女生人数为100-52=48人,
∴参加武术的女生为48-15-8-15=10人,
∴参加武术的人数为20+10=30人,
∴30÷100=30%,
参加器乐的人数为9+15=24人,
∴24÷100=24%,
补全条形统计图和扇形统计图如图所示:
(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.
答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.
(3)500×21%=105(人).
答:估计其中参加“书法”项目活动的有105人.
(4).
答:正好抽到参加“器乐”活动项目的女生的概率为.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,线段AB的两个端点A(0,2),B(1,0),点C为线段AB的中点.将线段BA绕点B按顺时针方向旋转90°得到线段BD,连结CD,AD.点P是直线BD上的一个动点.
(1)求点D的坐标和直线BD的解析式;
(2)当∠PCD=∠ADC时,求点P的坐标;
(3)若点Q是经过点B,点D的抛物线y=ax2+bx+2上的一个动点,请你探索:是否存在这样的点Q,使得以点P、点Q、点D为顶点的三角形与△ACD相似.若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线y=x﹣4与抛物线y=+bx+c交于坐标轴上两点A、C,抛物线与x轴另一交点为点B;
(1)求抛物线解析式;
(2)若动点D在直线AC下方的抛物线上;
①作直线BD,交线段AC于点E,交y轴于点F,连接AD;求△ADE与△CEF面积差的最大值,及此时点D的坐标;
②如图2,作DM⊥直线AC,垂足为点M,是否存在点D,使△CDM中某个角恰好是∠ACO的一半?若存在,直接写出点D的横坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,二次函数y=ax2+bx+c与x轴相交于点A(﹣1,0)和B(3,0),与y轴交于点C,连接AC、BC,且∠ACB=90°.
(1)求二次函数的解析式;
(2)如图(1),若N是AC的中点,M是BC上一点,且满足CM=2BM,连AM、BN相交于点E,求点M的坐标和△EMB的面积;
(3)如图(2),将△AOC沿直线BC平移得到△A′O′C′,再将△A′O′C′沿A′C′翻折得到△A′O′C′,连接AO′,AC′,请问△AO′C′能否构成等腰三角形?若能,请求出所有符合条件的点C的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).
(1)求抛物线的函数解析式;
(2)点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;
(3)在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,E是CD边的中点,且BE⊥AC于点F,连接DF,则下列结论错误的是( )
A. △ADC∽△CFBB. AD=DF
C. D. =
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系内,A,B为x轴上两点,以AB为直径的⊙M交y轴于C,D两点,C为的中点,弦AE交y轴于点F,且点A的坐标为(2,0),CD=8
(1)求⊙M的半径;
(2)动点P在⊙M的圆周上运动.
①如图1,当FP的长度最大时,点P记为P,在图1中画出点P0,并求出点P0横坐标a的值;
②如图1,当EP平分∠AEB时,求EP的长度;
③如图2,过点D作⊙M的切线交x轴于点Q,当点P与点A,B不重合时,请证明为定值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com