精英家教网 > 初中数学 > 题目详情

【题目】中,,点所在的直线上运动,作按逆时针方向).

1)如图,当点在线段上运动时,

求证:

是等腰三角形时,直接写出的长.

2)如图,当点的延长线上运动,的反向延长线与的延长线相交于点,是否存在点,使是等腰三角形?若存在,写出点的位置;若不存在,请简要说明理由.

【答案】(1) ①证明见解析;②AE的值是1 2 (3)存在,DBC的延长线上,且CD= 2

【解析】

(1) ①求出∠B=45°,根据三角形外角性质得出∠1+B=ADC=45°+2.求出即可;

②分为三种情况,①DE=AE,AD=AE,③AD=DE,根据等腰三角形性质(等腰三角形两边相等),三角形全等推出即可;

(2)存在,可证 得到CD=AC=2

(1) ①∵在RtABC中,∠BAC=90°。AB=AC,

∴∠B=C=45°

∵∠ADE=45°,

∴∠ADC=B+1=ADE+2,

45°+1=45°+2

∴∠1=2

②解:当△ADE是等腰三角形时,分为以下三种情况:

第一种情况: DE=AE,

DE=AE,

∴∠ADE=DAE=45°=C,

∴∠AED=90°,∠ADC=90° ,

DE⊥.AC

AD= DC

EAC的中点,

第二种情况: AD=AE,此时DB重合,EC重合,

AE=AC=2;

第三种情况: AD=DE,

在△ABD和△DCE中.

,

BD=CEAB=DC,

BD=CE=x,

RtABC中,∵∠BAC=90°, AB=AC=2,

BC=

DC=-x

-x=2,

x=-2,

AE=

综合上述: AE的值是1 2

(3):存在,理由如下:

又∵

又∵ ,

故存在点,使是等腰三角形,此时D在BC的延长线上,且CD= 2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,P是直线AC上一点,ADBPD,以AD为边作等边ADE(D,E在直线AC异侧).

(1)如图1,若点P在边AC上,连CD,且∠BDC=150°,则= ;(直接写结果)

(2)如图2,若点PAC延长线上,DEBCF求证:BF=CF;

(3)在图2中,若∠PBC=15°,AB=,请直接写出CP的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将一块等腰直角三角板ABC的直角顶点C置于直线l上,图2是由图1抽象出的几何图形,过AB两点分别作直线l的垂线,垂足分别为DE

1ACDCBE全等吗?说明你的理由.

2)若AD=2DE=3.5,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B= 60°.

1)如图①.若点EF分别在边ABAD上,且BE=AF,求证:CEF是等边三角形.

2)小明发现,当点EF分别在边ABAD上,且∠CEF=60°时,CEF也是等边三角形,

并通过画图验证了猜想;小丽通过探索,认为应该以CE= EF为突破口,构造两个全等三角形:小倩受到小丽的启发,尝试在BC上截取BM =BE,并连接ME,如图②,很快就证明了CEF是等边三角形.请你根据小倩的方法,写出完整的证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且ABCD,OB=6cm,OC=8cm.求:

(1)BOC的度数;

(2)BE+CG的长;

(3)O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OAB的顶点A(6,0),B(0,2),O是坐标原点.将OAB 绕点O按逆时针旋转90°得到ODC.

(1)写出C、D两点的坐标;

(2)求过C、D、A三点的抛物线的解析式,并求此抛物线的顶点M的坐标;

(3)在线段AB上是否存在点N使得MA=NM?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市风冈茶海之心、赤水佛光岩”、“仁怀中国酒文化城三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:

(1)本次调查活动的样本容量是  

(2)调查中属于基本了解的市民有  人;

(3)补全条形统计图;

(4)“略有知晓类占扇形统计图的圆心角是多少度?知之甚少类市民占被调查人数的百分比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,直径CD弦AB于E,AMBC于M,交CD于N,连接AD.

(1)求证:AD=AN;

(2)若AB=8,ON=1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC三个顶点的坐标分别为A11),B42),C34).

1)作出与△ABC关于y轴对称△A1B1C1,并写出三个顶点的坐标为:A1_____),B1______),C1_______);

2)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标;

查看答案和解析>>

同步练习册答案