分析 BE与CD数量关系是相等,由正方形的性质就可以得出△ADC≌△ABE,就可以得出CD=BE.
解答 解:CD=BE,BE⊥DC,
理由如下:
∵四边形ABFD和四边形ACGE都是正方形,
∴AD=AB,AC=AE,∠DAB=∠CAE=90°,
∴∠DAB+∠BAC=∠CAE+∠BAC,
∴∠DAC=∠BAE.
在△ADC和△ABE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△ADC≌△ABE(SAS),
∴CD=BE,
设CD交AB于M,交BE于N,![]()
∵△ADC≌△ABE,
∴∠ABE=∠ADC,
∵∠NMB=∠AMD,
∴∠MNB=∠MAD=90°,
∴BE⊥DC.
点评 此题考查了正方形的性质,涉及的知识有:全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | AB∥DE,∠A=∠D,BE=CF | B. | AB∥DE,AB=DE,AC=DF | ||
| C. | AB∥DE,AC=DF,BE=CF | D. | AB∥DE,AC∥DF,∠A=∠D |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com