【题目】如图,⊙O是等边△ACD的外接圆,AB是⊙O的直径,过点B作⊙O的切线BM,延长AD交BM于点E.
(1)求证:CD∥BM;(2)连接OE,若DE=4,求OE的长.
【答案】(1)见解析;(2)OE= .
【解析】
(1)由点A、C、D为⊙O的三等分点得到AD=DC=AC.则△ACD为等边三角形,再利用点O为△ACD的外心得到AB⊥CD.然后根据切线的性质得BE⊥AB.所以CD∥BM;
(2)连接DB,如图,利用△ACD为等边三角形和圆周角定理得到∠ABD=∠C=60°,则∠DBE=30°,根据含30度的直角三角形三边的关系得到BE=8,DB=4.AB=8,则OB=4,然后利用勾股定理计算出OE.
(1)证明:∵点A、C、D为⊙O的三等分点,
∴==,
∴AD=DC=AC.
∴△ACD为等边三角形,
而点O为△ACD的外心,
∴AB⊥CD.
∵BM为⊙O的切线,
∴BE⊥AB.
∴CD∥BM;
(2)解:连接DB,如图,
∵△ACD为等边三角形,
∴∠C=60°,
∴∠ABD=∠C=60°,
∴∠DBE=30°,
在Rt△DBE中,BE=2DE=8,DB=DE=4.
在Rt△ADB中,AB=2BD=8,则OB=4,
在Rt△OBE中,OE= =4,
故答案为:(1)见解析;(2)OE= .
科目:初中数学 来源: 题型:
【题目】如图,已知直线l:y=﹣x+4,在直线l上取点B1,过B1分别向x轴,y轴作垂线,交x轴于A1,交y轴于C1,使四边形OA1B1C1为正方形;在直线l上取点B2,过B2分别向x轴,A1B1作垂线,交x轴于A2,交A1B1于C2,使四边形A1A2B2C2为正方形;按此方法在直线l上顺次取点B3,B4,…,Bn,依次作正方形A2A3B3C3,A3A4B4C4,…,An﹣1AnBnCn,则A3的坐标为___,B5的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从相距420km的A、B两地相向而行,乙车比甲车先出发1小时,两车分别以各自的速度匀速行驶,途经C地(A、B、C三地在同一条直线上).甲车到达C地后因有事立即按原路原速返回A地,乙车从B地直达A地,甲、乙两车距各自出发地的路程y(千米)与甲车行驶所用的时间x(小时)的关系如图所示,结合图象信息回答下列问题:
(1)甲车的速度是 千米/时,乙车的速度是 千米/时;
(2)求甲车距它出发地的路程y(千米)与它行驶所用的时间x(小时)之间的函数关系式;
(3)甲车出发多长时间后两车相距90千米?请你直接写出答案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)(问题发现)
如图1,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,延长CA到点F,使得AF=AC,连接DF、BE,则线段BE与DF的数量关系为 ,位置关系为 ;
(2)(拓展研究)
将△ADE绕点A旋转,(1)中的结论有无变化?仅就图(2)的情形给出证明;
(3)(解决问题)
当AB=2,AD=,△ADE旋转得到D,E,F三点共线时,直接写出线段DF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B(3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为( )
A.( ,0)B.(,0)C.( ,0)D.(2,0)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点M从点A出发,沿A→B→C方向运动,当点M到达点C时停止运动,过点M作MN⊥AM交CD于点N,设点M的运动路程为x,CN=y,图2表示的是y与x的函数关系的大致图象,则矩形ABCD的面积是( )
A.20B.18C.10D.9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工艺品店购进A,B两种工艺品,已知这两种工艺品的单价之和为200元,购进2个A种工艺品和3个B种工艺品需花费520元.
(1)求A,B两种工艺品的单价;
(2)该店主欲用9600元用于进货,且最多购进A种工艺品36个,B种工艺品的数量不超过A种工艺品的2倍,则共有几种进货方案?
(3)已知售出一个A种工艺品可获利10元,售出一个B种工艺品可获利18元,该店主决定每售出一个B种工艺品,为希望工程捐款m元,在(2)的条件下,若A,B两种工艺品全部售出后所有方案获利均相同,则m的值是多少?此时店主可获利多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元
(1)现场销售和网络销售每件分别多少元?
(2)根据甜橙试销情况分析,现场销售量a(件)和网络销售量b(件)满足如下关系式:b=﹣a2+12a﹣200.求a为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为的内接三角形,为的直径,过点作的切线交的延长线于点.
(1)求证:;
(2)过点作的切线交于点,求证:;
(3)若点为直径下方半圆的中点,连接交于点,且,,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com