精英家教网 > 初中数学 > 题目详情

【题目】如图,点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∠ABC+∠ADC=120°,则∠A的度数是(

A.100°
B.110°
C.120°
D.125°

【答案】C
【解析】解:∵AD=CB,AB=CD,
∴四边形ABCD是平行四边形,
∴∠ABC=∠ADC,AD∥BC,
∴∠A+∠ABC=180°,
∵∠ABC+∠ADC=120°,
∴∠ABC=60°,
∴∠A=120°,
故选C.
【考点精析】利用平行四边形的判定与性质对题目进行判断即可得到答案,需要熟知若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(﹣1,﹣1),则两个正方形的位似中心的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算: +( 1﹣2cos60°+(3﹣π)0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程 ,且关于x的不等式组 只有4个整数解,那么b的取值范围是(
A.﹣1<b≤3
B.2<b≤3
C.8≤b<9
D.3≤b<4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在方格纸中,每个小正方形的边长均为1个单位长度有一个△ABC,它的三个顶点均与小正方形的顶点重合.

(1)将△ABC向右平移3个单位长度,得到△DEF(A与D、B与E、C与F对应),请在方格纸中画出△DEF;
(2)在(1)的条件下,连接AE和CE,请直接写出△ACE的面积S,并判断B是否在边AE上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在信息快速发展的社会,“信息消费”已成为人们生活的重要组成部分.某高校组织课外小组在郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,根据数据整理成如图所示的不完整统计表和统计图.已知A,B两组户数频数直方图的高度比为1:5.
月信息消费额分组统计表

组别

消费额(元)

A

10≤x<100

B

100≤x<200

C

20≤x<300

D

300≤x<400

E

x≥400

请结合图表中相关数据解答下列问题:

(1)这次接受调查的有户;
(2)在扇形统计图中,“E”所对应的圆心角的度数是
(3)请你补全频数直方图;
(4)若该社区有2000户住户,请估计月信息消费额不少于200元的户数是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,这是一把可调节座椅的侧面示意图,已知头枕上的点A到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA′处,求调整后点A′比调整前点A的高度降低了多少厘米(结果取整数)? (参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,CD为AB边上的中线,点E、F分别在线段CD、AD上,且 .点G是EF的中点,射线DG交AC于点H.

(1)求证:△DFE∽△DAC;
(2)请你判断点H是否为AC的中点?并说明理由;
(3)若将△ADH绕点D顺时针旋转至△A′DH′,使射线DH′与射线CB相交于点M(不与B,C重合.图2是旋转后的一种情形),请探究∠BMD与∠BDA′之间所满足的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系第一象限内,直线y=x与直线y=2x的内部作等腰Rt△ABC,是∠ABC=90°,边BC∥x轴,AB∥y轴,点A(1,1)在直线y=x上,点C在直线y=2x上:CB的延长线交直线y=x于点A1 , 作等腰Rt△A1B1C1 , 是∠A1B1C1=90°,B1C1∥x轴,A1B1∥y轴,点C1在直线y=2x上…按此规律,则等腰Rt△AnBnCn的腰长为

查看答案和解析>>

同步练习册答案