分析 (1)由题意可知(4,0),由抛物线经过点O可求得c=0,将c=0,x=4,y=0代入抛物线的解析式可证得:4a+b=0;
(2)如图1所示:由菱形的性质可知:DN=NB,DN⊥AN,由OM=AD=AB,可证明AD=AB=DB,由AE=2可知AE=EB,由等腰三角形三线合一的性质可知AE⊥DE,从而可证明DE与圆A相切;
(3)如图2所示.设点P的坐标为(2,m).由题意可知点E的坐标为(-2,2),设抛物线的解析式为y=ax(x-4),将x=2代入得y=-4a即m=-4a.由∠OPM为锐角且抛物线的顶点在菱形的内部可知-4a<-2、-4a>-4$\sqrt{3}$,从而可求得a的取值范围.
解答 解:(1)∵O的坐标为(0,0),抛物线的对称轴为x=2,
∴点M的坐标为(4,0).
∵抛物线经过点O,
∴c=0.
将c=0,x=4,y=0代入抛物线的解析式得:16a+4b=0.
整理得:4a+b=0.
(2)DE与圆A相切.
理由:如图1所示:![]()
∵四边形ABCD为菱形,
∴DN=NB,DN⊥AN.
∵∠AOD=∠AON=∠DNA=90°,
∴四边形OAND为矩形.
∴OA=DN=2.
∴DB=OM=4.
∵OM=AD=AB,
∴AD=AB=DB.
∵AE为圆A的半径,
∴AE=EB=2.
∵AD=DB,AE=EB.
∴AE⊥DE.
∴DE与圆A相切.
(3)如图2所示.![]()
设点P的坐标为(2,m).
∵OM为圆A的直径,
∴∠OEM=90°.
∵AE=2,OA=2,
∴点E的坐标为(2,-2).
设抛物线的解析式为y=ax(x-4),将x=2代入得y=-4a.
∴m=-4a.
∵∠OPM为锐角,
∴点P在点E的下方.
∴-4a<-2.
解得:a>$\frac{1}{2}$.
在Rt△AOD中,OD=$\sqrt{A{D}^{2}-O{A}^{2}}$=2$\sqrt{3}$.
∴AC=4$\sqrt{3}$.
∵点P在菱形的内部,
∴点P在点C的上方.
∴-4a>-4$\sqrt{3}$.
解得:a<$\sqrt{3}$.
∴a的取值范围是$\frac{1}{2}<a<\sqrt{3}$.
点评 本题主要考查的是二次函数的综合应用,解答本题主要应用了菱形的性质、切线的判定、等边三角形的性质和判定、等腰三角形三线合一的性质,依据腰三角形三线合一的性质证得DE⊥AE是解答问题(2)的关键,由抛物线的顶点P在菱形ABCD的内部且∠OPM为锐角得出点P的纵坐标的取值范围是解问题(3)的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| x | … | -2 | -1 | 0 | 1 | 2 | … |
| y | … | -11 | -2 | 1 | -2 | -5 | … |
| A. | -5 | B. | -2 | C. | 1 | D. | -11 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 62° | B. | 152° | C. | 208° | D. | 236° |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1:2 | B. | 1:3 | C. | 1:$\sqrt{5}$ | D. | $\sqrt{5}$:1 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com