7£®Èçͼ×󷽿òÖдÓÉϵ½ÏÂÊǰ´Ò»¶¨¹æÂÉÅÅÁеķ½³Ì×飬Óұ߷½¿òÖдÓÉϵ½ÏÂÊǶÔÓ¦×󷽿òÖз½³Ì×éµÄ½â£®
Èô×󷽿òÖеķ½³Ì×é×ÔÉ϶øÏÂÒÀ´Î¼Ç×÷·½³Ì×é1£¬·½³Ì×é2£¬·½³Ì×é3£¬¡­£¬·½³Ì×én£®
£¨1£©½â·½³Ì×é1£¬²¢½«ËüµÄ½âÌîÈëÓұߵķ½¿òÖУ¨ÔÚÌâºóµÄ¿Õ°×´¦Ð´³ö½âÌâ¹ý³Ì£©£»
£¨2£©¹Û²ì·½³Ì×éµÄ±ä»¯¹æÂÉ£¬²ÂÏëµÚn¸ö·½³Ì×飬²¢½«ÆäÌîÈë×ó±ßµÄ·½¿òÖУ»
£¨3£©Çó³öµÚn¸ö·½³Ì×éµÄ½â£¬²¢½«ÆäÌîÈëÓұߵķ½¿òÖУ¨ÔÚÌâºóµÄ¿Õ°×´¦Ð´³ö½âÌâ¹ý³Ì£©£®

·ÖÎö £¨1£©ÀûÓÃÏûÔª·¨½â¶þÔªÒ»´Î·½³Ì×é¼´¿É£»
£¨2£©ÒÀ¾Ý·½³Ì×éÖÐxyϵÊýµÄ±ä»¯¹æÂɿɵóöµÚn¸ö·½³Ì×飻
£¨3£©¸ù¾Ý¸÷·½³Ì×éµÄ½âµÄ±ä»¯¹æÂɵóö·½³Ì×éµÄ½â¼´¿É£®

½â´ð ½â£º£¨1£©$\left\{\begin{array}{l}2x+y=3¢Ù\\ x-2y=4¢Ú\end{array}\right.$£¬
ÓÉ¢ÚµÃx=2y+4¢Û£¬
°Ñ¢Û´úÈë¢Ù£¬µÃ2£¨2y+4£©+y=3£®
½âµÃy=-1£®
°Ñy=-1´úÈë¢ÛµÃx=2£®
ËùÒÔ·½³Ì×é1µÄ½âΪ$\left\{\begin{array}{l}x=2\\ y=-1\end{array}\right.$£®
¹Ê´ð°¸Îª£º2£¬-1£»

£¨2£©·½³Ì×énΪ£º$\left\{\begin{array}{l}2x+y=2n+1\\ x-2ny=4{n}^{2}\end{array}\right.$£®
¹Ê´ð°¸Îª£º$\left\{\begin{array}{l}2x+y=2n+1\\ x-2ny=4{n}^{2}\end{array}\right.$£»

£¨3£©ËüµÄ½âΪ$\left\{\begin{array}{l}x=2n\\ y=-2n+1\end{array}\right.$£®
¹Ê´ð°¸Îª£º$\left\{\begin{array}{l}x=2n\\ y=-2n+1\end{array}\right.$£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þÔªÒ»´Î·½³Ì×éµÄ½âÒÔ¼°ÀûÓÃÒÑÖª·½³Ì×éµÃ³ö·½³Ì×é½âµÄ¹æÂÉ£¬ÕýÈ··¢ÏÖ¹æÂÉÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èçͼ£¬½«¡÷ABCÈÆµãCÐýת60¡ãµÃµ½¡÷A¡äB¡äC£¬ÒÑÖªAC=6£¬BC=2$\sqrt{5}$£¬ÔòÏß¶ÎABɨ¹ýµÄͼÐεÄÃæ»ýΪ£¨¡¡¡¡£©
A£®¦ÐB£®3¦ÐC£®6¦ÐD£®$\frac{8}{3}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Èçͼ1Ëùʾ£¬ÒÔ¡÷ABCµÄ±ßAB¡¢ACΪб±ßÏòÍâ·Ö±ð×÷µÈÑüRt¡÷ABDºÍµÈÑüRt¡÷ACE£¬¡ÏADB=¡ÏAEC=90¡ã£¬FΪBC±ßµÄÖе㣬Á¬½ÓDF¡¢EF£®
£¨1£©ÈôAB=AC£¬ÊÔ˵Ã÷DF=EF£»
£¨2£©Èô¡ÏBAC=90¡ã£¬Èçͼ2Ëùʾ£¬ÊÔ˵Ã÷DF¡ÍEF£»
£¨3£©Èô¡ÏBACΪ¶Û½Ç£¬Èçͼ3Ëùʾ£¬ÔòDFÓëEF´æÔÚʲôÊýÁ¿¹ØÏµÓëλÖùØÏµ£¿ÊÔ˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èçͼ£¬ÒÑÖª¡÷ABC¡Õ¡÷ADE£¬¡ÏBAC=130¡ã£¬¡ÏC=25¡ã£¬¡ÏE=25¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Óá°£¼¡±¡¢¡°£¾¡±»ò¡°=¡±ºÅÌî¿Õ£º
£¨1£©-59£¼0£¬£¨2£©-0.1£¾-0.2£¬£¨3£©34£¾-35£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®ÏÂÁмÆËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a3•a2=a5B£®a6¡Âa3=a2C£®3a+5b=8abD£®4a2-2a2=2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬AC=4cm£¬BC=3cm£®¶¯µãM£¬N´ÓµãCͬʱ³ö·¢£¬·Ö±ðÑØCA£¬CBÏòÖÕµãA£¬BÒÆ¶¯£¬µãMµÄËÙ¶ÈÊÇÿÃë1cm£¬Í¬Ê±¶¯µãP´ÓµãB³ö·¢£¬ÒÔÿÃë2cmµÄËÙ¶ÈÑØBAÏòÖÕµãAÒÆ¶¯£®ÉèÒÆ¶¯Ê±¼äΪt£¨0£¼t£¼2.5£©Ã룬µ±tΪºÎֵʱ£¬ÒÔA£¬P£¬MΪ¶¥µãµÄÈý½ÇÐοÉÄÜÓë¡÷BPNÏàËÆ£¿´ËʱµãNµÄËÙ¶Èʱ¶àÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª£ºÈçͼ£¬ÔÚ¡÷ABCÖУ¬AB=AC£¬¡ÏABC¡¢¡ÏACBµÄƽ·ÖÏßÏཻÓÚµãO£¬Áª½áA0£¬²¢ÑÓ³¤ÓëBC½»ÓÚµãD£®ÇóÖ¤£ºAD¡ÍBC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®µ¥Ïîʽ $-\frac{{{x^2}{y^3}}}{4}$µÄϵÊýÓë´ÎÊý·Ö±ðΪ£¨¡¡¡¡£©
A£®-$\frac{1}{4}$£¬3B£®-1£¬6C£®$-\frac{1}{4}$£¬5D£®$\frac{1}{4}$£¬5

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸