精英家教网 > 初中数学 > 题目详情

【题目】(操作发现)

(1)如图1,ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.

①求∠EAF的度数;

DEEF相等吗?请说明理由;

(类比探究)

(2)如图2,ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:

①∠EAF的度数;

②线段AE,ED,DB之间的数量关系.

【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2

【解析】

试题(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出ACF=∠BCD,证明ACFBCD,得出CAF=∠B=60°,求出EAF=∠BAC+∠CAF=120°;

证出DCE=∠FCE,由SAS证明DCEFCE,得出DE=EF即可;

(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出ACF=∠BCD,由SAS证明ACFBCD,得出CAF=∠B=45°,AF=DB,求出EAF=∠BAC+∠CAF=90°;

证出DCE=∠FCE,由SAS证明DCEFCE,得出DE=EF;在RtAEF中,由勾股定理得出AE2+AF2=EF2,即可得出结论.

试题解析:解:(1)①∵ABC是等边三角形,AC=BC,∠BAC=∠B=60°.∵∠DCF=60°,∴∠ACF=∠BCD

ACFBCD中,AC=BC,∠ACF=∠BCDCF=CD,∴ACFBCD(SAS),∴∠CAF=∠B=60°,∴∠EAF=∠BAC+∠CAF=120°;

DE=EF理由如下:

∵∠DCF=60°,∠DCE=30°,∴∠FCE=60°﹣30°=30°,∴∠DCE=∠FCEDCEFCE中,CD=CF,∠DCE=∠FCECE=CE,∴DCEFCE(SAS),∴DE=EF

(2)①∵ABC是等腰直角三角形,ACB=90°,∴AC=BC,∠BAC=∠B=45°.∵∠DCF=90°,∴∠ACF=∠BCDACFBCD中,AC=BC,∠ACF=∠BCDCF=CD,∴ACFBCD(SAS),∴∠CAF=∠B=45°,AF=DB,∴∠EAF=∠BAC+∠CAF=90°;

AE2+DB2=DE2,理由如下:

∵∠DCF=90°,∠DCE=45°,∴∠FCE=90°﹣45°=45°,∴∠DCE=∠FCEDCEFCE中,CD=CF,∠DCE=∠FCECE=CE,∴DCEFCE(SAS),∴DE=EFRtAEF中,AE2+AF2=EF2,又AF=DB,∴AE2+DB2=DE2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,,设

1)如图1,当点内,

①若,求的度数;

小明同学通过分析已知条件发现:是顶角为的等腰三角形,且,从而容易联想到构造一个顶角为的等腰三角形.于是,他过点,且,连接,发现两个不同的三角形全等:_____________再利用全等三角形及等腰三角形的相关知识可求出的度数

请利用小王同学分析的思路,通过计算求得的度数为_____

②小王在①的基础上进一步进行探索,发现之间存在一种特殊的等量关系,请写出这个等量关系,并加以证明.

2)如图2,点外,那么之间的数量关系是否改变?若改变,请直接写出它们的数量关系;若不变,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰中,,把沿折叠,点的对应点为,连接,使平分,若,则点是(

A.的内心B.的外心C.的内心D.的外心

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足SPAB=S矩形ABCD,则点PA、B两点的距离之和PA+PB的最小值为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1)如图1,将矩形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C'处,若∠ADB=54°,则∠DBE的度数为 °

2)小明手中有一张矩形纸片ABCDAB=4AD=9.(画一画)如图2,点E在这张矩形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点MN分别在边ADBC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,并用黑色水笔把线段MN描清楚);

3)(算一算)如图3,点F在这张矩形纸片的边BC上,将纸片折叠,使FB落在射线FD上,折痕为GF,点AB分别落在点A'B'处,若AG=,求B'D的长;

4)(验一验)如图4,点K在这张矩形纸片的边AD上,DK=3,将纸片折叠,使AB落在CK所在直线上,折痕为HI,点AB分别落在点A'B'处,小明认为B'I所在直线恰好经过点D,他的判断是否正确,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为124AB的长度是13米,MN是二楼楼顶,MN∥PQCMN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC约为多少米?( sin42°≈07tan42°≈09

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,小明和小红要测量小河对岸大树BC的高度,小红在点A测得大树顶端B的仰角为45°,小明从A点出发沿斜坡走3米到达斜坡上点D,在此处测得树顶端点B的仰角为31°,且斜坡AF的坡比为12

1)求小明从点A到点D的过程中,他上升的高度;

2)依据他们测量的数据能否求出大树BC的高度?若能,请计算;若不能,请说明理由.(参考数据:sin31°≈0.52cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC 中,AB=AC,点 M BA 的延长线上,点 N BC 的延长线上,过点 C CDAB 交∠CAM 的平分线于点 D

1)如图 1,求证:四边形 ABCD 是平行四边形;

2)如图 2,当∠ABC=60°时,连接 BD,过点 D DEBD,交 BN 于点 E,在不添加任何辅助线的情况下,请直接写出图 2 中四个三角形(不包含CDE),使写出的每个三角形的面积与CDE 的面积相等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:

  收集数据

从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:

八年级

78

86

74

81

75

76

87

70

75

90

75

79

81

70

74

80

86

69

83

77

九年级

93

73

88

81

72

81

94

83

77

83

80

81

70

81

73

78

82

80

70

40

整理、描述数据

将成绩按如下分段整理、描述这两组样本数据:

成绩(x

40≤x≤49

50≤x≤59

60≤x≤69

70≤x≤79

80≤x≤89

90≤x≤100

八年级人数

0

0

1

11

7

1

九年级人数

1

0

0

7

10

2

(说明:成绩80分及以上为体质健康优秀,7079分为体质健康良好,6069分为体质健康合格,60分以下为体质健康不合格)

  分析数据

两组样本数据的平均数、中位数、众数、方差如表所示:

年级

平均数

中位数

众数

方差

八年级

78.3

77.5

75

33.6

九年级

78

80.5

a

52.1

1)表格中a的值为______

2)请你估计该校九年级体质健康优秀的学生人数为多少?

3)根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)

查看答案和解析>>

同步练习册答案