【题目】中华文化历史悠久,包罗万象.某校为了加强学生对中华传统文化的认识和理解,营造校园文化氛围,举办了“弘扬中华传统文化,做新时代的中学生”的知识竞赛.以下是从七年、八年两个年级随机抽取20名同学的测试成绩进行调查分析,成绩如下:
(1)根据上面的数据,将下列表格补充完整,整理、描述数据:
50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 | |
七年 | 1 | 2 | 6 | ||
八年 | 0 | 1 | 10 | 1 | 8 |
(说明:成绩90分及以上为优秀,60分以下为不合格)分析数据:
年级 | 平均数 | 中位数 | 众数 |
七年 | 84 | 88.5 | |
八年 | 84.2 | 74 |
(2)为调动学生学习传统文化的积极性,七年级根据学生的成绩制定了奖励标准,凡达到或超过这个标准的学生将获得奖励.如果想让一半左右的学生能获奖,应根据 来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”);
(3)若八年级有800名学生,试估计八年级学生成绩优秀的人数;
【答案】(1)3,8,89,77,;(2)中位数;(3)估计八年级学生成绩优秀的人数约为320人.
【解析】
(1)根据题意中给出的数据,直接找出答案即可;
(2)根据中位数的定义即可得到结论;
(3)用800×八年级学生成绩优秀的人数所占的百分比即可得到结论.
解:(1)根据题意,得:七年级人数:70≤x≤79的有3人,
80≤x≤89的有8人,
七年级知识竞赛的成绩的众数为89,
八年级知识竞赛的成绩的中位数为:=77;
∴将下列表格补充完整:从左到右从上到下依次为:3,8,89,77,;
(2)如果想让一半左右的学生能获奖,应根据中位数来确定奖励标准比较合适;
故答案为:中位数;
(3)800×=320(人)
答:估计八年级学生成绩优秀的人数约为320人.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD、DEFG都是正方形,边长分别为m、n(m<n).坐标原点O为AD的中点,A、D、E在y轴上.若二次函数y=ax2的图象过C、F两点,则=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.
(1)如图1,请直接写出线段OE与OF的数量关系;
(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由
(3)若|CF﹣AE|=2,EF=2,当△POF为等腰三角形时,请直接写出线段OP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x,点A坐标为(1,0),过点A作x轴的垂线交直线于点,以原点O为圆心,OB 长为半径画弧交x轴于点A;再过点A作x轴的垂线交直线于点B,以原点O为圆心,OB 长为半径画弧交x轴于点A ,…,按此做法进行下去,点A 的坐标为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的边OC在x轴正半轴上,点B的坐标为(8,4).
(1)请求出菱形的边长;
(2)若反比例函数 经过菱形对角线的交点D,且与边BC交于点E,请求出点E的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某摩托车厂2011年第一、第二季度各月产量折线统计图,下列结论正确的是( )
A.第二季度月产量共350辆
B.3月到4月的月产量增长最快
C.从1月到6月月产量逐渐增长
D.2月份比1月份月产量增加了50辆
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.
(1)理解与判断:
邻边长分别为1和3的平行四边形是 阶准菱形;
邻边长分别为3和4的平行四边形是 阶准菱形;
(2)操作、探究与计算:
①已知ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;
②已知ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出ABCD是几阶准菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中每个小正方形的边长均为1,点A、B、C、D均在小正方形的顶点上,
(1)在图①中画出以线段AB为一条边的菱形ABEF,点E、F在小正方形顶点上,且菱形ABEF的面积为20;
(2)在图②中画出以CD为对角线的矩形CGDH,G、H点在小正方形顶点上,点G在CD的下方,且矩形CGDH的面积为10,CG>DG.并直接写出矩形CGDH的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究:已知二次函数经过点.
(1)求该函数的表达式;
(2)如图所示,点是抛物线上在第二象限内的一个动点,且点的横坐标为,连接,,.
①求的面积关于的函数关系式;
②求的面积的最大值,并求出此时点的坐标.
拓展:在平面直角坐标系中,点的坐标为,的坐标为,若抛物线与线段有两个不同的交点,请直接写出的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com