精英家教网 > 初中数学 > 题目详情

【题目】甲三角形的周长为,乙三角形的第一条边长为,第二条边长为,第三条边比第二条边短

1)求乙三角形第三条边的长;

2)甲三角形和乙三角形的周长哪个大?试说明理由.

【答案】1-b+5;(2)甲三角形的周长较大,理由见解析

【解析】

1)根据第二条边长为a2-3b,第三条边比第二条边短a2-2b-5.可求出第三条边;
2)求出乙三角形的周长,再利用作差法,和非负数的意义做出判断即可.

解:(1)由题意得,(a2-3b-a2-2b-5=-b+5
∴乙三角形第三条边的长为-b+5
2)乙三角形的周长为:(a2-2b+a2-3b+-b+5=2a2-6b+5
甲、乙三角形的周长的差为:(3a2-6b+8-2a2-6b+5=a2+30
∴甲三角形的周长较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是菱形,AD=5,过点DAB的垂线DH,垂足为H,交对角线ACM,连接BM,且AH=3

1)求证:DM=BM

2)求MH的长;

3如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为SS≠0),点P的运动时间为t秒,求St之间的函数关系式;

4)在(3)的条件下,当点P在边AB上运动时是否存在这样的 t值,使∠MPB∠BCD互为余角,若存在,则求出t值,若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:二次函数的图象与x轴交于点A、,顶点为

求该二次函数的解析式;

如图,过A、C两点作直线,并将线段AC沿该直线向上平移,记点A、C分别平移到点D、E若点F在这个二次函数的图象上,且是以EF为斜边的等腰直角三角形,求点F的坐标;

试确定实数p,q的值,使得当时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图1中小正方形的个数为1个;图2中小正方形的个数为:1+3422个;图3中小正方形的个数为:1+3+5932个;图4中小正方形的个数为:1+3+5+71642个;

1)根据你的发现,第n个图形中有小正方形:1+3+5+7+…+      个.

2)由(1)的结论,解答下列问题:已知连续奇数的和:(2n+1+2n+3+2n+5+……+137+1393300,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学问题:计算(其中m,n都是正整数,且m2,n1).

探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.

探究一:计算

1次分割,把正方形的面积二等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续二等分,…;

n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

探究二:计算++++

1次分割,把正方形的面积三等分,其中阴影部分的面积为

2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+

3次分割,把上次分割图中空白部分的面积继续三等分,…;

n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为++++,最后空白部分的面积是

根据第n次分割图可得等式: ++++=1﹣

两边同除以2,得++++=

探究三:计算++++

(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)

解决问题:计算++++

(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)

根据第n次分割图可得等式:_________

所以, ++++=________

拓广应用:计算 ++++

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2bxc经过ABC的三个顶点,与y轴相交于(0 ),点A坐标为(12),点B是点A关于y轴的对称点,点Cx轴的正半轴上.

1求该抛物线的函数解析式;

2F为线段AC上一动点,过点FFEx轴,FGy轴,垂足分别为点EG,当四边形OEFG为正方形时,求出点F的坐标;

32中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EFAC交于点MDG所在的直线与AC交于点N,连接DM,是否存在这样的t,使DMN是等腰三角形?若存在,求t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,BD为对角线.

(1)尺规作图:作CD边的垂直平分线EF,交CD于点E,交BD于点F(保留作图痕迹,不要求写作法);

(2)在(1)的条件下,若AB=4,求△DEF的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),,按此方式依次操作,则第6个正六边形的边长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】每年“双十一”购物活动,商家都会利用这个契机进行打折满减的促销活动.某商家平时的优惠措施是按所有商品标价打七折:“双十一”活动期间的优惠措施是:购买的所有商品先按标价总和打七五折,再享受折后每满元减元的优惠.如标价为元的商品,折后为元,再减元,即实付:(元).

1)该商店标价总和为元的商品,在“双十一”购买,最后实际支付只需多少元?

2)小明妈妈在这次活动中打算购买某件商品,打折满减后,应付金额是元,求该商品的标价.

3)在(2)的条件下,若该商家出售的商品标价均为整数,小明通过计算后告诉妈妈:通过凑单(再购买少量商品)实际支付金额只需再多付   元,就可获得最大优惠?

查看答案和解析>>

同步练习册答案