【题目】为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面AD与通道BC平行,通道水平宽度BC为8米,∠BCD=135°,通道斜面CD的长为6米,通道斜面AB的坡度i=1:.
(1)求通道斜面AB的长;
(2)为增加市民行走的舒适度,拟将设计图中的通道斜面CD的坡度变缓,修改后的通道斜面DE的坡角为30°,求此时BE的长.
(答案均精确到0.1米,参考数据:≈1.41,≈2.24,≈2.45)
【答案】(1)通道斜面AB的长约为7.4米;(2)BE的长约为4.9米.
【解析】
(1)过点A作AN⊥CB于点N,过点D作DM⊥BC于点M,再根据∠BCD=135°,通道斜面CD的长为6米,就可以得出通道的高度DM,AN=DM,再根据通道斜面AB的坡度i=1:,就可以求出通道斜面AB的长;(2)修改后的通道斜面DE的坡角为30°和DM高度可以求出EM长度,EC=EM-CM,BE=BC-EC即可得出答案
(1)过点A作AN⊥CB于点N,过点D作DM⊥BC于点M,
∵∠BCD=135°,
∴∠DCM=45°.
∵在Rt△CMD中,∠CMD=90°,CD=6,
∴DM=CM=CD=3,
∴AN=DM=3,
∵通道斜面AB的坡度i=1:,
∴tan∠ABN==,
∴BN=AN=6,
∴AB==3≈7.4.
即通道斜面AB的长约为7.4米;
(2)∵在Rt△MED中,∠EMD=90°,∠DEM=30°,DM=3,
∴EM=DM=3,
∴EC=EM﹣CM=3﹣3,
∴BE=BC﹣EC=8﹣(3﹣3)=8+3﹣3≈4.9.
即此时BE的长约为4.9米.
科目:初中数学 来源: 题型:
【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数且abc≠0)与直线l都经过y轴上的同一点,且抛物线的顶点在直线l上,则称抛物线L与直线l具有“一带一路”关系,并且将直线1叫做抛物线L的“路线”,抛物线L叫做直线l的“带线”
(1)若“路线”l的表达式为y=2x﹣4,它的“带线”L的顶点的横坐标为﹣1,求“带线”L的表达式;
(2)如果抛物线y=2x2﹣4x+1与直线y=nx+1具有“一带一路”关系,如图,设抛物线与x轴的一个交点为A,与y轴交于点B,其顶点为C.
①求△ABC的面积;
②在y轴上是否存在一点P,使S△PBC=S△ABC,若存在,直接写出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于二次函数,以下结论:①抛物线交轴有两个不同的交点;②不论取何值,抛物线总是经过一个定点;③设抛物线交轴于、两点,若,则;④抛物线的顶点在图象上;⑤抛物线交轴于点,若是等腰三角形,则,,.其中正确的序号是( )
A. ①②⑤ B. ②③④ C. ①④⑤ D. ②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB⊥BC,射线CM⊥BC,且BC=5,AB=1,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.
(1)如图1,当BP= 时,△ADP是等腰直角三角形.(请直接写出答案)
(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并加以证明.
(3)若△PDC是等腰三角形,作点B关于AP的对称点B′,连结B′D,请画出图形,并求线段B′D的长度.(参考定理:若直角△ABC中,∠C是直角,则BC2+AC2=AB2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E.
(1)在AD上求作点F,使点F到CD和BC的距离相等;
(要求:尺规作图,保留作图痕迹,不写作法)
(2)判断四边形AECF是什么特殊四边形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,CD⊥AB于点G,E是CD上一点,且BE=DE,延长EB至点P,连结CP,使PC=PE,延长BE与⊙O交于点F,连结BD,FD.
(1)求证:CD=BF;
(2)求证:PC是⊙O的切线;
(3)若tanF=,AG﹣BG=,求ED的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的对角线AC,BD相交于点O,且DE∥AC,CE∥BD,若AC=2,则四边形OCED的周长为( )
A.16B.8C.4D.2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com