【题目】如图,画,并画的平分线.
(1)将三角尺的直角顶点落在的任意一点P上,使三角尺的两条直角边与的两边分别垂直,垂足为E、F(如图1),则 (选填<,>,=)
(2)把三角尺绕着点P旋转(如图2),与相等吗?试猜想、的大小关系,并说明理由.
拓展延伸1:在(2)条件下,过点P作直线,分别交、于点G、H,如图3
①图中全等三角形有多少对(不添加辅助线)
②猜想、、之间的关系,并证明你的猜想.
拓展延伸2:
画,并画的平分线,在上任取一点P,作.的两边分别与、相交于E、F两点(如图4),与相等吗?请说明理由.
【答案】(1)=;(2),理由见解析;拓展延伸1:①全等三角形有3对;②,理由见解析;拓展延伸2:;理由见解析;
【解析】
(1)根据角平分线的性质定理证明;
(2)证明△MPE≌△NPF,根据全等三角形的性质证明结论;
拓展延伸1:①根据等腰直角三角形的性质得到OP=PG=PH,证明△GPE≌△OPF(ASA),△EPO≌△FPH,△GPO≌△OPH,得到答案;
②根据勾股定理,全等三角形的性质解答;
拓展延伸2:作PG⊥OA于G,PH⊥OB于H,证明△PGE≌△PHF,根据全等三角形的性质证明结论.
(1)∵平分,
∴,
故答案为:=;
(2),
理由如下:∵,
∴,
由(1)得,,
在和中,
,
∴,
∴;
拓展延伸1:①∵平分,
∴,
∵GH⊥OC,
∴,
∴,
∵,
∴,
在和中,
,
∴,
同理,,
故答案为:3;
②,
理由如下:∵,
∴,
∵,
∴,
在中,,
∴;
拓展延伸2:;
理由:作于G,于H,
∵平分,
∴,
∵,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上
一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D在AB中点时.
①求证:四边形BECD是菱形;
②当∠A为多少度时,四边形BECD是正方形?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题提出:如图已知直线OA的解析式是y=2x,OC⊥OA,求直线OC的函数解析式.
甲同学提出了他的想法:在直线y=2x上取一点M,过M作x轴的垂线,垂足为D设点M的横坐标为m,则点M的纵坐标为2m.即OD=m,MD=2m,然后在OC上截取ON=OM,过N作x轴的垂线垂足为B.则点N的坐标为 ,直线OC的解析式为 .
(2)拓展:已知直线OA的解析式是y=kx,OC⊥OA,求直线OC的函数解析式.
(3)应用:直接写出经过P(2,3),且垂直于直线y=﹣x+2的直线解析式 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=80°,OE平分∠MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O重合),连接AC交射线OE于点D.当AB⊥OM,且△ADB有两个相等的角时,∠OAC的度数为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算
(1) -|-3|
(2)a34+(-a2)32+(-2a4)2
(3)(x+2y-3)(x-2y+3)
(4)3(x-2y)2-(2x+y)(-y+2x)-3x(x-0.5y)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2),
(1)写出点A、B的坐标:A(_____,_____)、B(_____,_____);
(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,写出A′、B′、C′三点坐标;
(3)求△ABC的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】星期五小颖放学步行从学校回家,当她走了一段路后,想起要去买彩笔做画报,于是原路返回到刚经过的文具用品店,买到彩笔后继续往家走.如图是她离家的距离与所用时间的关系示意图,请根据图中提供的信息回答下列问题:
(1)小颖家与学校的距离是 米;
(2)表示的实际意义是 ;
(3)小颖本次从学校回家的整个过程中,走的路程是多少米?
(4)买到彩笔后,小颖从文具用品店回到家步行的速度是多少米/分?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com