【题目】如图,直线与双曲线在第一象限内交于、两点,已知,.
(1)__________,____________________,____________________.
(2)直接写出不等式的解集;
(3)设点是线段上的一个动点,过点作轴于点,是轴上一点,求的面积的最大值.
【答案】(1),,.(2)或.(3)当时,有最大值,最大值为
【解析】
(1)先求出反比例函数解析式,进而求出点A坐标,最后用待定系数法,即可得出结论;
(2)直接利用函数图象得出结论;
(3)先设出点P坐标,进而表示出△PED的面积,即可得出结论.
解:(1)∵点B(2,1)在双曲线上,
∴k2=2×1=2,
∴双曲线的解析式为y2=,
∵A(1,m)在双曲线y2=上,
∴m=1×2=2,
∴A(1,2),
∵直线AB:y1=k1x+b过A(1,2)、B(2,1)两点,
∴,
∴,
∴直线AB的解析式为:y=x+3;
故,,
故答案为:-1;2;3;
(2)根据函数图象得,不等式y2>y1的解集为0<x<1或x>2;
(3)设点,且,
则
当时,有最大值,最大值为
科目:初中数学 来源: 题型:
【题目】如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:
①∠A始终为60°;
②当∠ABC=45°时,AE=EF;
③当△ABC为锐角三角形时,ED=;
④线段ED的垂直平分线必平分弦BC.
其中正确的结论是_____.(把你认为正确结论的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼顶M的仰角为45°,已知测角仪的高AD为1.5米,请根据他们的测量数据求此楼MF的高(结果精确到0.1m,参考数据:,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.
(1)若∠B=55°,求∠AFG的度数;
(2)求证:GE⊥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1)所示,为矩形的边上一点,动点,同时从点出发,点沿折线运动到点时停止,点沿运动到点时停止,它们运动的速度都是秒,设、同时出发秒时,的面积为.已知与的函数关系图象如图(2)(曲线为抛物线的一部分)则下列结论正确的是( )
图(1) 图(2)
A.B.当是等边三角形时,秒
C.当时,秒D.当的面积为时,的值是或秒
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O的直径AB长为12,点E是半径OA的中点,过点E作CD⊥AB交O于点C、D,点P在上运动,点Q在线段CP上,且PQ=2CQ,则EQ的最大值是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com