【题目】如图,是边长为9的等边三角形,是边上一动点,由向运动(与、不重合),是延长线上一动点,与点同时以相同的速度由向延长线方向运动(不与重合),过作于,连接交于
(1)若时,求的长
(2)当点,运动时,线段与线段是否相等?请说明理由
(3)在运动过程中线段的长是否发生变化?如果不变,求出线段的长;如果发生变化,请说明理由
【答案】(1)当∠BQD=30° 时,AP=3;(2)相等,见解析;(3)DE的长不变,
【解析】
(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;
(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DBQ≌△DFP得出DQ=DP即可得出结论;
(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.
(1)解:∵△ABC是边长为9的等边三角形
∴∠ACB=60°,且∠BQD=30°
∴∠QPC=90°
设AP=,则PC=,QB=
∴QC=
∵在Rt△QCP中,∠BQD=30°
∴PC=QC 即
解得
∴ 当∠BQD=30° 时,AP=3
(2)相等,
证明:过P作PF∥QC,则△AFP是等边三角形
∴AP=PF,∠DQB=∠DPF
∵P、Q同时出发,速度相同,即BQ=AP,
∴BQ=PF,
在△DBQ和△DFP中,
∴△DBQ≌△DFP(AAS)
∴QD=PD
(3)解:不变,
由(2)知△DBQ≌△DFP
∴BD=DF
∵△AFP是等边三角形,PE⊥AB,
∴AE=EF,
∴DE=DF+EF=BF+FA=AB=为定值,即DE的长不变.
科目:初中数学 来源: 题型:
【题目】如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED ;②AC+ BE= AB ;③DA平分∠CDE ;④∠BDE =∠BAC;⑤=AB:AC.其中结论正确的个数有()
A.5个B.4个
C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】针对下列图象李明同学说到:图①可能是;图②可能是;图③可能是;图④可能是
你认为其中必定正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图,点,,在同一条直线上,连结DC
(1)请判断与的位置关系,并证明
(2)若,,求的面积
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书“,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:
本数(本) | 频数(人数) | 频率 |
5 | a | 0.2 |
6 | 18 | 0.36 |
7 | 14 | b |
8 | 8 | 0.16 |
合计 | 50 | c |
我们定义频率=,比如由表中我们可以知道在这次随机调查中抽样人数为50人课外阅读量为6本的同学为18人,因此这个人数对应的频率就是=0.36.
(1)统计表中的a、b、c的值;
(2)请将频数分布表直方图补充完整;
(3)求所有被调查学生课外阅读的平均本数;
(4)若该校八年级共有600名学生,你认为根据以上调查结果可以估算分析该校八年级学生课外阅读量为7本和8本的总人数为多少吗?请写出你的计算过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数 y kx 与 y 的图象交于 A、B 两点,过 A 作 y 轴的垂线,交函数的图象于点 C,连接 BC,则△ABC 的面积为( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上.
(1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;
(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;
(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E和点F(点F与点C,D不重合).
(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是 ;
(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;
(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D是直角等腰△ABC斜边AB的中点,M为边AC上不和A、C重合的一动点,联结DM,过D作DNDM,交BC于N,联结MN.
(1)求证:以AM、MN、BN为边的三角形是直角三角形
(2)如果AC2,AMx,试用x表示△DMN的面积,并求当ADM22.5时△DMN的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com