精英家教网 > 初中数学 > 题目详情

【题目】已知:图1、图2是两张形状、大小完全相同的网格,网格中的每个小正方形的边长均为.格中各有一个完全相同的三角形,请在图1、图2分别面一条直线,满足以下要求

1)直线与三角形的交点要经过网格的格点(每个小正方形的顶点均为格点)

2)在图1、图2中分别用不同的方法将三角形分成两个图形其中一个是三角形另一个是四边形,分割后的三角形的面积记为,四边形的面积为,且

【答案】1)见解析(2)见解析

【解析】

1)找到三角形边上的格点即可求解;

1)首先求出△ABC的面积为15,分割后的三角形的面积记为S1,四边形的面积为S2,且S1S2411,推出分割后的三角形的面积为4,利用数形结合的思想解决问题即可求解.

1)如图1中,直线EF即为所求.

2SABC=×6×5=15

∵分割后的三角形的面积记为S1,四边形的面积为S2,且S1S2411

∴分割后的三角形的面积为4

故可得到分割后的三角形是底为4,高为2的三角形,

故在如图2中,直线EF即为所求.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示的一块地,∠ADC90°AD12mCD9mAB39mBC36m,求这块地的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中的位置如图.

(1)分别写出下列各点的坐标:

________, ________, ________;

(2)说明 经过怎样的平移得到:________;

(3)若点 )是 内部一点,则平移后内的对应点 的坐标为________;

(4) 的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图△ABC∠ACB90°ACBCAEBC边上的中线过点CAE 的垂线CF垂足为F过点BBD⊥BCCF的延长线于点D.

(1)求证:AECD.

(2)AC12 cmBD的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(2,﹣2),B(6,﹣2),动点P从点O出发,沿着x轴正方向以每秒2个单位的速度移动,过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<4).△OPQ与四边形OABC重叠部分的面积为S.

(1)求经过O、A、B三点的抛物线的解析式;
(2)若将△OPQ沿着直线PQ翻折得到△O′PQ,则当t=时,点O′恰好在抛物线上.
(3)在(2)的条件下,记△O′PQ与四边形OABC重叠的面积为S,求S与t的函数关系式,并注明自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个袋中有3张形状大小完全相同的卡片,编号为1,2,3,先任取一张,将其编号记为m,再从剩下的两张中任取一张,将其编号记为n.
(1)请用树状图或者列表法,表示事件发生的所有可能情况;
(2)求关于x的方程x2+mx+n=0有两个不相等实数根的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则 的值等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线l1:y=﹣x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,﹣ ).

(1)求抛物线l2的函数表达式;
(2)P为直线x=1上一动点,连接PA,PC,当PA=PC时,求点P的坐标;
(3)M为抛物线l2上一动点,过点M作直线MN∥y轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程

(1)6x2﹣x﹣12=0(用配方法)

(2)(x+4)2=5(x+4)

查看答案和解析>>

同步练习册答案