【题目】已知如图1,圆柱体铅笔插入卷笔刀充分卷削,得到底面直径BC为2的圆锥,∠BAC=30°.底面边长为1的正六棱柱铅笔插入卷削,得到如图2所示铅笔和锯齿状木屑(木屑厚度忽略不计),木屑锯齿齿锋点G相邻凹陷最低点为H,则AG=________,GH=________.
【答案】
【解析】
抽象图形,利用等腰三角形的性质和三角形外角的性质,可证得∠GEO=30°,再结合已知条件求出OG,EG的长,利用解直角三角形求出EO的长,从而可求出OA的长,然后利用勾股定理求出AG的长;底面边长为1的正六棱柱铅笔插入卷削,如图,可得到△OGK是等边三角形,利用解直角三角形求出OM,MN的长,再利用平行线分线段成比例定理可求出MH的长,然后证明△HMG是等腰直角三角形,继而可求出HG的长.
解:如图,
∵∠BAC=30°,
∴∠GAO=15°,
∵AE=EG,
∴∠GAO=∠AGE=15°
∴∠GEO=∠AGE+∠GAO=30°,
∵圆锥的底面直径为2,
∴OG=1,
在Rt△AOG中,EG=2OG=2,
∴EO=EGcos∠GEO=2×cos30°=,
∴OA=AE+OE=2+,
∴;
∵底面边长为1的正六棱柱铅笔插入卷削,如图,
∴△OGK是边长为1的等边三角形,
∴OM=OGsin60°=,
∴MN=1-,
如图,
∵MH∥AO,
∴,
∴,
解之:MH=,
∵GK=1,HG=HK,HM⊥GK,
∴△HKG是等腰直角三角形,
∴△HMG是等腰直角三角形,
∴即,
解之:HG=.
故答案为:;.
此题考查正多边形和圆,勾股定理,等边三角形的判定及性质,等腰直角三角形的性质,平行线分线段成比例,解直角三角形,正确理解题中各部分之间的关系,根据题意画出对应的图形辅助解题是关键,体现数形结合是思想.
科目:初中数学 来源: 题型:
【题目】已知,,D为直线BC上一点,E为直线AC上一点,,设,.
(1)如图1,若点D在线段C上,点E在线段AC上,,,则______;________.
(2)如图2,若点D在线段BC上,点E在线段AC上,则,之间有什么关系式?它说明理由.
(3)是否存在不同于(2)中的,之间的关系式?请写出这个关系式(写出一种即可),说明理由:若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩
(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;
(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于,两点,与轴交于点.
(1)求,的值;
(2)若点是抛物线上的一点,且位于直线上方,连接,,.当四边形的面积有最大值时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰Rt△ABC中,∠ACB=90°,AB=.点D,E分别在边AB,AC上,将线段ED绕点E按逆时针方向旋转90°得到EF,连结BF,BF的中点为G.
(1)当点E与点C重合时.
①如图1,若AD=BD,求BF的长.
②当点D从点A运动到点B时,求点G的运动路径长.
(2)当AE=3,点G在△DEF一边所在直线上时,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.某学校为了了解学生自主学习、合作交流的具体情况,对部分学生进行了为期半个月的跟踪调査,并将调査结果分类,A:特别好;B:好;C:一般;D:较差.现将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:
(1)本次调查中,一共调査了 名同学,其中C类女生有 名;
(2)将下面的条形统计图补充完整;
(3)为共同进步,学校想从被调査的A类和D类学生中分别选取一位同学进行一帮一互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男生、一位女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.
(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;
(3)如图3,若AB=,过点M作MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,AB是直径,D是AC中点,直线OD与⊙O相交于E,F两点,P是⊙O外一点,P在直线OD上,连接PA,PC,AF,且满足∠PCA=∠ABC.
(1)求证:PA是⊙O的切线;
(2)证明:;
(3)若BC=8,tan∠AFP=,求DE的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com