【题目】若二次函数的图象的顶点在的图象上,则称为的伴随函数,如是的伴随函数.
(1)若函数是的伴随函数,求的值;
(2)已知函数是的伴随函数.
①当点(2,-2)在二次函数的图象上时,求二次函数的解析式;
②已知矩形,为原点,点在轴正半轴上,点在轴正半轴上,点(6,2),当二次函数的图象与矩形有三个交点时,求此二次函数的顶点坐标.
【答案】(1);(2)①或;②顶点坐标是(1,3)或(4,6).
【解析】
(1)将函数的图象的顶点坐标是(1,1),代入即可求出t的值;
(2)①设二次函数为,根据伴随函数定义,得出代入二次函数得到:,把(2,-2),即可得出答案;
②由①可知二次函数为,把(0,2)代入,得出h的值,进行取舍即可,把(6,2)代入得出h的值,进行取舍即可.
解:(1)函数的图象的顶点坐标是(1,1),
把,代入,得,解得:.
(2)①设二次函数为.
二次函数是的伴随函数,,
二次函数为,
把,代入得,
,二次函数的解析式是或.
②由①可知二次函数为,
把(0,2)代入,得,
解得,
当时,二次函数的解析式是,顶点是(0,2)
由于此时与矩形有三个交点时只有两个交点
∴不符合题意,舍去
∴当时,二次函数的解析式是,顶点坐标为(1,3).
把(6,2)代入得,
解得,,
当时,二次函数的解析式是,顶点是(9,11)
由于此时与矩形有三个交点时只有两个交点
∴不符合题意,舍去
∴当时,二次函数的解析式是,顶点坐标为(4,6).
综上所述:顶点坐标是(1,3)或(4,6).
科目:初中数学 来源: 题型:
【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是( )
A. 0.5B. 0.7C. ﹣1D. ﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在Rt△ABC中,∠BAC=90°,AD⊥BC于点D,点O是AC边上的一点,连接BO交AD于点F,OE⊥OB交BC边于点E.
(1)试说明:△ABF∽△COE.
(2)如图(2),当O为AC边的中点,且时,求的值.
(3)当O为AC边的中点,时,请直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在利用图象法求方程x2=x+3的解x1,x2时,下面是四位同学的解法:
甲:函数y=x2﹣x﹣3的图象与x轴交点的横坐标是x1,x2
乙:函数y=x2与y=x+3的图象交点的横坐标是x1,x2
丙:函数y=x2﹣3与y=x的图象交点的横坐标是x1,x2
丁:函数y=x2+1与y=x+4的图象交点的横坐标是x1,x2
你认为解法正确的同学有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1).
(1)把平移后,其中点移到点,面出平移后得到的;
(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx﹣3的图象与x轴交于A、B与y轴交于点C,顶点坐标为(1,﹣4)
(1)求二次函数解析式;
(2)该二次函数图象上是否存在点M,使S△MAB=S△CAB,若存在,求出点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本小题满分7分)
四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.
(1)求随机抽取一张卡片,恰好得到数字2的概率;
(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A、B的坐标分别是A(4,3)、B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.
(1)画出△A1B1C,直接写出点A1、B1的坐标;
(2)求在旋转过程中,△ABC所扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且.
(1)求证:PD是⊙O的切线;
(2)若AD=12,AM=MC,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com