【题目】若∠α的余角是38°15′,则∠a的补角为_____°.
科目:初中数学 来源: 题型:
【题目】a是一个两位数,b是一个三位数,把a放在b的右边组成一个五位数,用a,b的代数式表示所得的五位数是( )
A. ba B. 10b+a C. 10000b+a D. 100b+a
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连ME.
正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°—∠AMN—∠AMB
=180°—∠B—∠AMB
=∠MAB=∠MAE.
(下面请你完成余下的证明过程)
(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则当∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
(3)若将(1)中的“正方形ABCD”改为“正边形ABCD…X”,请你作出猜想:当∠AMN=°时,结论AM=MN仍然成立.(直接写出答案,不需要证明)
图1 图2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系xOy中,点B(﹣2,2),过反比例函数y=(x<0,常数k<0)图象上一点A(﹣,m)作y轴的平行线交直线l:y=x+2于点C,且AC=AB.
(1)分别求出m、k的值,并写出这个反比例函数解析式;
(2)发现:过函数y=(x<0)图象上任意一点P,作y轴的平行线交直线l于点D,请直接写出你发现的PB,PD的数量关系 ;
应用:①如图2,连接BD,当△PBD是等边三角形时,求此时点P的坐标;
②如图3,分别过点P、D作y的垂线交y轴于点E、F,问是否存在点P,使得矩形PEFD的周长取得最小值?若存在,请求出此时点P的坐标及矩形PEFD的周长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )
A.20
B.27
C.35
D.40
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】可乐和奶茶含有大量的咖啡因,世界卫生组织建议青少年每天摄入的咖啡因不能超过0.000085kg,将数据0.000085用科学记数法表示为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与y轴交于点C(0,3),与x轴交于点A、B,点A在点B的左边,且B(3,0),AB=2
(1)求该抛物线的函数关系式;
(2)如果抛物线的对称轴上存在一点P,使得△APC的周长最小,求此时P点的坐标,并求出△APC周长;
(3)设D为抛物线上一点,E为对称轴上一点,若以点A、B、D、E为顶点的四边形是平行四边形,求点D的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com