精英家教网 > 初中数学 > 题目详情
16.如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示-1的点重合,将圆沿数轴滚动1周,点A到达点A′的位置,则点A′表示的数是(  )
A.π-1B.-π-1C.-π-1或π-1D.-π-1或π﹢1

分析 先求出圆的周长,再根据数轴的特点进行解答即可.

解答 解:∵圆的直径为1个单位长度,
∴此圆的周长=π,
∴当圆向左滚动时点A′表示的数是-π-1;
当圆向右滚动时点A′表示的数是π-1.
故选C.

点评 本题考查的是实数与数轴的特点,熟知实数与数轴上的点是一一对应关系是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.化简:
(1)$\sqrt{27}$-$2\sqrt{8}$-6$\sqrt{\frac{1}{3}}$+$\sqrt{18}$
(2)$\frac{2}{b}$$\sqrt{a{b}^{2}}$÷$\frac{6a}{{b}^{2}}$$\sqrt{\frac{b}{a}}$×(-$\frac{2}{3}$$\sqrt{{a}^{3}b}$)(a>0,b>0)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线y=$\frac{1}{3}$x2-2交于A,B两点,且A点在y轴左侧,P点坐标为(0,-4),连接PA,PB.有以下说法:
①PO2=PA•PB; ②当k>0时,(PA+AO)(PB-BO)的值随k的增大而增大;
③当k=-$\frac{\sqrt{3}}{3}$时,BP2=BO•BA;④△PAB面积的最小值为4$\sqrt{6}$,
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解下列方程.
(1)2x2+x-6=0                 
(2)$\frac{x-2}{x+2}$+$\frac{4}{{x}^{2}-4}$=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,抛物线y=x2+bx+c经过点A(-1,0),B(3,0),抛物线的对称轴l与x轴交于点D,P为对称轴l上一个动点.
(1)求抛物线的解析式;
(2)以点B为圆心,BP为半径作⊙B,当直线AP与⊙B相切时,求点P坐标;
(3)在(1)中的抛物线上求点M,使得△ACM是以AC为直角边的直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.在平面直角坐标系中,O为坐标原点,点A坐标为(1,0),以OA为边在第一象限内作等边△OAB,C为x轴正半轴上的一个动点(OC>1),连接BC,以BC为边在第一象限内作等边△BCD,直线DA交y轴于E点.
(1)如图,当C点在x轴上运动时,设AC=x,请用x表示线段AD的长;
(2)随着C点的变化,直线AE的位置变化吗?若变化,请说明理由;若不变,请求出直线AE的解析式.
(3)以线段BC为直径作圆,圆心为点F,
①当C点运动到何处时直线EF∥直线BO?此时⊙F和直线BO的位置关系如何?请说明理由.
②G为CD与⊙F的交点,H为直线DF上的一个动点,连结HG、HC,求HG+HC的最小值,并将此最小值用x表示.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB=12.动点P、Q分别在边AD和BC上,且BQ=3DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.
(1)求$\frac{EF}{QG}$的值.
(2)当点P运动时,试探究四边形EFGQ的面积是否会发生变化?如果发生变化,请用x的代数式表示四边形EFGQ的面积S;如果不发生变化,请求出这个四边形的面积S.
(3)当△PQG是以线段PQ为腰的等腰三角形时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.上学期期末考试后,小林同学数学科的期末考试成绩为76分,但他平时数学测试的成绩为90分,期中数学考试成绩为80分.
(1)请问他一学期的数学平均成绩是多少?
(2)如果期末总评成绩按:平时成绩占20%,期中成绩占30%,期末成绩占50%计算,那么该同学期末总评数学成绩是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在?ABCD中,AE=EB,AF=2,求FC的长.

查看答案和解析>>

同步练习册答案