分析 (1)分别求出各不等式的解集,再求出其公共解集即可;
(2)先把原式化为不等式组的形式,再求出其解集即可;
(3)、(4)分别求出各不等式的解集,再求出其公共解集即可.
解答 解:(1)$\left\{\begin{array}{l}4x-10<0①\\ 5x+4>x②\\ 11-2x≥1+3x③\end{array}\right.$,由①得,x<$\frac{5}{2}$,由②得,x>-1,由③得,x≤$\frac{10}{3}$,
故不等式组的解集为:-1<x<$\frac{5}{2}$;
(2)原不等式组可化为$\left\{\begin{array}{l}\frac{2(1+3x)}{7}≥-7①\\ \frac{2(1+3x)}{7}≤9②\end{array}\right.$,由①得,x≥-$\frac{51}{6}$,由②得,x≤$\frac{61}{6}$,
故不等式组的解集为:-$\frac{51}{6}$≤x≤$\frac{61}{6}$;
(3)$\left\{\begin{array}{l}3(x-1)+2>5x+3①\\ \frac{x-1}{2}+x≤3x-4②\end{array}\right.$,由①得,x<-2,由②得,x≥$\frac{7}{3}$,
故不等式组的解集为空集;
(4)$\left\{\begin{array}{l}5x-6≤x+3①\\ \frac{x}{4}-1<\frac{x-3}{3}②\end{array}\right.$,由①得,x≤$\frac{9}{4}$,由②得,x>0,
故不等式组的解集为:0<x≤$\frac{9}{4}$.
点评 本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com