精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程x2﹣6x+k+3=0有两个不相等的实数根

(1)求k的取值范围;

(2)若k为大于3的整数,且该方程的根都是整数,求k的值.

【答案】1k6;(2k=45

【解析】

试题(1)利用根的判别式大于0,即可得出结论;(2)利用上题的结果及题中要求的k为大于3的整数,限定k的取值,代入此方程中,解方程,求出满足方程的根都是整数的k值.

试题解析:(1)因为若方程有两个不相等的实数根,则Δ=b2-4ac=36-4k+3>0,整理:24-4k>0,解得:k6,所以k的取值范围为k6;(2)因为k6,且k为大于3的整数,所以k可以为45,当 k=4时,原方程为,无整数解,故舍去 ,当k=5时,原方程为,解为,符合题意,所以k="5" .所以k的值为45

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=4,AD=6,点F是AB的中点,E为BC边上一点,且EFED,连结DF,M为DF的中点,连结MA,ME.若AMME,则AE的长为(

A.5 B.2 C.2 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017浙江省宁波市)在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写了下面这道题,请你来解一解:

如图,将矩形ABCD的四边BACBDCAD分别延长至EFGH,使得AE=CGBF=DH,连接EFFGGHHE

(1)求证:四边形EFGH为平行四边形;

(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tanAEH=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用适当的方法解下列方程:

(1)x2=49

(3)2x2+4x-3=0(公式法) (4)(x+8)(x+1)=-12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】公园里有甲、乙两组游客正在做团体游戏,两组游客的年龄如下:(单位:岁)

甲组:13,13,14,15,15,15,15,16,17,17;

乙组:3,4,4,5,5,6,6,6,54,57.

我们很想了解一下甲、乙两组游客的年龄特征,请你运用“数据的代表”的有关知识对甲、乙两组数据进行分析,帮我们解决这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点ABC在一条直线上,△ABD△BCE均为等边三角形,连接AECDAE分别交CDBD于点MPCDBE于点Q,连接PQBM,下面结论:

①△ABE≌△DBC②∠DMA=60°③△BPQ为等边三角形;④MB平分∠AMC

其中结论正确的有( )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+cyx的部分对应值如下表:

x

-1

0

1

3

y

-3

1

3

1

下列结论:①抛物线的开口向下;②其图象的对称轴为x=1;③当x<1时,函数值yx的增大而增大;④方程ax2+bx+c=0有一个根大于4,其中正确的结论有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数yax2+bx+ca≠0)的图象如图所示,对称轴是直线x=1,下列结论abc>0;b2﹣4ac<0;a+b+c<0;2a+b=0.其中正确的是(  )

A. ①②③ B. ②④ C. ②③ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为1的正方形ABCD的对角线AC,BD相交于点O,直角∠MPN的顶点P与点O重合,直角边PM,PN分别与OA,OB重合,然后逆时针旋转∠MPN,旋转角为θ(0°<θ<90°),PM、PN分别交AB、BCE、F两点,连接EFOB于点G,则下列结论中正确的是_____.

(1)EF=OE;(2)S四边形OEBF:S正方形ABCD=1:4;(3)在旋转过程中,当△BEF与△COF的面积之和最大时,AE=;(4)OGBD=AE2+CF2.

查看答案和解析>>

同步练习册答案