【题目】(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.
(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.
【答案】(1)135°;(2)150°
【解析】
(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;
(2)将△ABP绕点B顺时针方向旋转60°得到△CBP',由旋转知,△APB≌△CP'B,即∠BPA=∠BP'C,P'B=PB=5,P'C=PA=12,进而得出△PBP'也是正三角形,即∠PP'B=60°,PP'=5.
在△PP'C中,由勾股定理的逆定理得出∠PP'C=90°,从而可以得出结论.
(1)连接PQ.
由旋转可知:,QC=PA=3.
又∵ABCD是正方形,
∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,
即∠PBQ=90°,∴∠PQB=45°,PQ=4.
则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.
即∠PQC=90°.
故∠BQC=90°+45°=135°.
(2)将△ABP绕点B顺时针方向旋转60°得到△CBP',
此时点P的对应点是点P'.
由旋转知,△APB≌△CP'B,即∠BPA=∠BP'C,P'B=PB=5,P'C=PA=12.
又∵△ABC是正三角形,∴∠ABP+∠PBC=60°,
∴∠CBP'+∠PBC=60°,∴∠PBP'=60°.
又∵P'B=PB=5,∴△PBP'也是正三角形,即∠PP'B=60°,PP'=5.
在△PP'C中,∵PC=13,PP'=5,P'C=12,∴PC2=PP'2+P'C2.
即∠PP'C=90°.
故∠BPA=∠BP'C=60°+90°=150°.
科目:初中数学 来源: 题型:
【题目】在一个不透明的口袋里装有分别标有数字﹣3、﹣1、0、2的四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.
(1)从中任取一球,求抽取的数字为正数的概率;
(2)从中任取一球,将球上的数字记为a,求关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率;
(3)从中任取一球,将球上的数字作为点的横坐标,记为x(不放回);再任取一球,将球上的数字作为点的纵坐标,记为y,试用画树状图(或列表法)表示出点(x,y)所有可能出现的结果,并求点(x,y)落在第二象限内的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90,AB=6,AC=8,点D为边BC的中点,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90.
(1)当DP⊥AB时,求CQ的长;
(2)当BP=2,求CQ的长;
(3)连结AD,若AD平分∠PDQ,求DP:DQ.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+b与反比例函数的图象相交于点A(a,3),且与x轴相交于点B.
(1)求a、b的值;
(2)若点P在x轴上,且△AOP的面积是△AOB的面积的,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为半圆O的直径,C为AO的中点,CD⊥AB交半圆于点D,以C为圆心,CD为半径画弧DE交AB于E点,若AB=4cm,则图中阴影部分的面积为__________cm2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 (1),已知△ABC是等边三角形,以BC为直径的⊙O交AB、AC于D、E.求证:
(1)△DOE是等边三角形.
(2)如图(2),若∠A=60°,AB≠AC, 则(1)中结论是否成立?如果成立,请给出证明;如果不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com