【题目】如图,中,,是中线,,则_____
【答案】
【解析】
作CH⊥AD于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,如图,先证明△ADB≌△EDC,得到EC=AB=10,再利用△AEF为等腰直角三角形,计算出AF=EF=,则根据勾股定理可计算出CF=,从而得到AC=,接着利用△ACH为等腰直角三角形,得到AH=CH=6,然后利用勾股定理计算出CD,从而得到BC的长.
解:作CH⊥AD于H,延长AD到E使DE=AD=7,连接CE,作EF⊥AC于F,如图,
∵AD是中线,
∴BD=CD,
在△ADB和△EDC中
,
∴△ADB≌△EDC(SAS),
∴EC=AB=10,
在RtAEF中,∵∠DAC=45°,AE=14,
∴AF=EF=AE=,
在Rt△CEF中,,
∴AC=AF-CF=,
在Rt△ACH中,∵∠HAC=45°,
∴AH=CH=AC=6,
∴DH=AD-AH=1,
在Rt△CDH中,CD=
∴BC=2CD=,
故答案为:.
科目:初中数学 来源: 题型:
【题目】一家水果店以每斤6元的价格购进某种水果若干斤,然后以每斤12元的价格出售,每天可售出100斤,通过调查发现,这种水果每斤的售价每降低0.1元,每天可多售出10斤.为保证每天至少售出360斤,水果店决定降价销售.
(1)若将这种水果每斤的售价降低x元,则每天的销售量是多少斤(用含x的代数式表示);
(2)销售这种水果要想每天盈利1200元,那么水果店需将每斤的售价降低多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】锐角ΔABC中,BC=6,SΔABC=12,两动点M,N分别在边AB,AC上滑动,且MN∥BC,以MN为边向下作正方形MPQN,设其边长为x,正方形MPQN与ΔABC公共部分的面积为y(y>0).
(1)ΔABC中边BC上高AD=______.
(2)当x=______时,PQ恰好落在边BC上(如图1).
(3)当PQ在ΔABC外部时(如图2),求y关于x的函数关系式.(注明x的取值范围)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将图中的A型、B型、C型矩形纸片分别放在3个盒子中,盒子的形状、大小、质地都相同,再将这3个盒子装入一只不透明的袋子中.
(1)搅匀后从中摸出1个盒子,求摸出的盒子中是型矩形纸片的概率;
(2)搅匀后先从中摸出1个盒子(不放回),再从余下的两个盒子中摸出一个盒子,求2次摸出的盒子的纸片能拼成一个新矩形的概率(不重叠无缝隙拼接).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点坐标分别为A(0,1)、B(3,3)、C(1,3).
(1) 画出△ABC关于点O的中心对称图形△A1B1C1
(2) 画出△ABC绕原点O逆时针旋转90°的△A2B2C2,直接写出点C2的坐标为______.
(3) 若△ABC内一点P(m,n)绕原点O逆时针旋转90°的对应点为Q,则Q的坐标为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.
(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;
(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )
A. 1一定不是关于x的方程x2+bx+a=0的根
B. 0一定不是关于x的方程x2+bx+a=0的根
C. 1和﹣1都是关于x的方程x2+bx+a=0的根
D. 1和﹣1不都是关于x的方程x2+bx+a=0的根
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MON=90°,等边三角形ABC的一个顶点B是射线ON上的一定点,顶点A于点O重合,顶点C在∠MON内部
(1)当点A在射线OM上移动到A1时,连接A1B,请在∠MON内部作出以A1B为一边的等边三角形A1BC1(保留作图痕迹,不写作法);
(2)设A1B与OC交于点Q,BC的延长线与A1C1交于点D.求证:△BCQ∽△BA1D;
(3)连接CC1,试猜想∠BCC1为多少度,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM; ②△EOB≌△CMB;③MB:OE=3:2;④四边形EBFD是菱形.其中正确结论是( )
A.①②③B.②③④C.①④D.①③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com