精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分MAC,交BC于点D,交BE于点F.

(1)判断直线BE与线段AD之间的关系,并说明理由;

(2)若C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.

【答案】(1)BE垂直平分AD理由见解析;(2)存在,△ABD、△GAE是等边三角形.

【解析】

(1)根据余角的性质即可得到∠5=∠C;由AD平分∠MAC,得到∠3=∠4,根据三角形的外角的性质得到∠BAD=∠ADB,推出△BAD是等腰三角形,于是得到结论.

(2)根据∠5=∠C=30°,AM⊥BC,可得∠ABD=60°,∠CAM=60°,进而得到∠ADB=∠4+∠C=60°,∠BAD=60°,依据∠ABD=∠BDA=∠BAD,可得△ABD是等边三角形;根据∠AEG=∠AGE=∠GAE,即可得到△AEG是等边三角形.

解:(1)BE垂直平分AD,理由:

∵AM⊥BC,

∴∠ABC+∠5=90°,

∵∠BAC=90°,

∴∠ABC+∠C=90°,

∴∠5=∠C;

∵AD平分∠MAC,

∴∠3=∠4,

∵∠BAD=∠5+∠3,∠ADB=∠C+∠4,∠5=∠C,

∴∠BAD=∠ADB,

∴△BAD是等腰三角形,

∵∠1=∠2,

∴BE垂直平分AD;

(2)△ABD、△GAE是等边三角形.理由:

∵∠5=∠C=30°,AM⊥BC,

∴∠ABD=60°,

∵∠BAC=90°,

∴∠CAM=60°,

∵AD平分∠CAM,

∴∠4=∠CAM=30°,

∴∠ADB=∠4+∠C=60°,

∴∠BAD=60°,

∴∠ABD=∠BDA=∠BAD,

∴△ABD是等边三角形

Rt△BGM中,∠BGM=60°=∠AGE,

Rt△ACM中,∠CAM=60°,

∴∠AEG=∠AGE=∠GAE,

∴△AEG是等边三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在航线l的两侧分别有观测点AB,点A到航线的距离为2km,点B位于点A北偏东60°方向且与A相距10km.现有一艘轮船从位于点B南偏西76°方向的C处,正沿该航线自西向东航行,5分钟后该轮船行至点A的正北方向的D处.

(1)求观测点B到航线的距离;

(2)求该轮船航行的速度(结果精确到0.1km/h).

(参考数据: ≈1.73,sin76°≈0.97,cos76°≈0.24,tan76°≈4.01)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数yx2bx1的图象经过点(23)

(1)求这个函数的表达式;

(2)画出它的图象,并指出图象的顶点坐标;

(3)观察图象,说明yx的增大是怎样变化的?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

(1)(-20)+(-18)-(-14)-13

(2) 8+(-3)×(-2)2

(3)

(4)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长方形 ABCD 中,放入六个形状大小相同的长方形,所标尺寸如图所示, 则图中阴影部分面积为(

A. 44cm2B. 36cm2C. 96 cm2D. 84cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,FAD的中点,延长BC到点E,使CE=BC,连结DECF

1)求证:四边形CEDF是平行四边形;

2)若AB=4AD=6∠B=60°,求DE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场用14500元购进甲、乙两种矿泉水共500箱,矿泉水的成本价与销售价如表(二)所示:

类别

成本价(元/箱)

销售价(元/箱)

25

35

35

48

求:(1)购进甲、乙两种矿泉水各多少箱?

(2)该商场售完这500箱矿泉水,可获利多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两人骑自行车绕800米圆形跑道行驶,他们从同一地点出发,如果方向相反,每一分二十秒相遇一次,如果方向相同,每十三分二十秒相遇一次.假设二人速度不等,求各人速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知在Rt△ABCACB = 90oAC =6BC = 8F在线段AB以点B为圆心BF为半径的圆交BC于点E射线AE交圆B于点D(点DE不重合).

1如果设BF = xEF = yyx之间的函数关系式并写出它的定义域

2如果ED的长

3联结CDBD请判断四边形ABDC是否为直角梯形?说明理由

查看答案和解析>>

同步练习册答案