精英家教网 > 初中数学 > 题目详情

【题目】文具店某种文具进价为每件20元,市场调查反映:当售价为每件30元时,平均每星期可售出140件;而昂每件售价涨1元,平均每星期少售出10件,设每件涨价元,平均每星期的总利润为元.

1)写出的函数关系式,并求出自变量的取值范围;

2)如何定价才能使每星期的利润最大?且每星期的最大利润是多少?

【答案】1();(2)定价为32元时,每星期获得的利润最大,最大利润为1440元.

【解析】

1)根据销售总利润等于单件利润乘以销售量即可求解;
2)根据二次函数的顶点坐标即可求解.

解:(1

答:的函数关系式为

自变量的取值范围是.

2

所以顶点坐标为

,有最大值为1440

答:定价为32元时,每星期获得的利润最大,最大利润为1440.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的方程有唯一实数解,且反比例函数的图象在每个象限内的增大而增大,那么反比例函数的关系式为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某果园的工人需要摘苹果园和梨园的果实,苹果园的果实是梨园的倍,如果前三天工人都在苹果园摘果实,第四天,的工人到梨园摘果实,剩下的工人仍在苹果园摘果实,则第四天结束后苹果园的果实全部摘完,梨园剩下的果实正好是名工人天的工作量.如果前三天工人都在苹果园摘果实,要使苹果和梨同时摘完,则第四天开始,再外请一个工人的情况下,应该安排___人摘苹果.(假定工人们每人每天摘果实的数量是相等的,且每人每天的工作时间相等)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了汉字听写大赛活动.经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,最终没有学生得分低于25分,也没有学生得满分.根据测试成绩绘制出频数分布表和频数分布直方图(如图).

请结合图标完成下列各题:

1)求表中a的值;

2)请把频数分布直方图补充完整;

3)若本次决赛的前5名是3名女生ABC2名男生MN,若从3名女生和2名男生中分别抽取1人参加市里的比赛,试用列表法或画树状图的方法求出恰好抽到女生A和男生M的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程(a﹣1x2+2x+a﹣1=0

1)若该方程有一根为2,求a的值及方程的另一根;

2)当a为何值时,方程仅有一个根?求出此时a的值及方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:

a+b+c0ab+c1abc0④9a3b+c0ca1.其中所有正确结论的序号是(  )

A.①②B.①③④C.①②③④D.①②③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰直角△OEF在坐标系中,有E(02)F(20),将直角△OEF绕点E逆时针旋转90°得到△ADE,且A在第一象限内,抛物线y=ax2+bx+c经过点AE.且2a+3b+5=0

1)求抛物线的解析式.

2)过ED的中点O'O'BOEBO'CODC,求证:OBO'C为正方形.

3)如果点PE开始沿EA边以每秒2厘米的速度向点A移动,同时点Q由点A沿AD边以每秒1厘米的速度向点D移动,当点P移动到点A时,PQ两点同时停止,且过PGPAE,交DE于点G,设移动的开始后为t秒.

S=PQ2(厘米),试写出St之间的函数关系式,并写出t的取值范围?

S取最小时,在抛物线上是否存在点R,使得以PAQR为顶点的四边形是平行四边形?如果存在,求出R的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】移动通信公司建设的钢架信号塔(如图1),它的一个侧面的示意图(如图2).CD是等腰三角形ABC底边上的高,分别过点A、点B作两腰的垂线段,垂足分别为B1A1,再过A1B1分别作两腰的垂线段所得的垂足为B2A2,用同样的作法依次得到垂足B3A3,….若AB3米,sinα,则水平钢条A2B2的长度为(  )

A. B. 2C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块长方形的土地,宽为120m,建筑商把它分成甲、乙、丙三部分,甲和乙均为正方形,现计划甲建住宅区乙建商场,丙地开辟成面积为3200m2的公园.若设这块长方形的土地长为xm.那么根据题意列出的方程是_____.(将答案写成ax2+bx+c=0(a≠0)的形式)

查看答案和解析>>

同步练习册答案