【题目】在平面直角坐标系中,抛物线y=﹣ax2+2ax+c与x轴相交于A(﹣1,0)、B两点(A点在B点左侧),与y轴相交于点C(0,3),点D是抛物线的顶点.
(1)如图1,求抛物线的解析式;
(2)如图1,点F(0,b)在y轴上,连接AF,点Q是线段AF上的一个动点,P是第一象限抛物线上的一个动点,当b=﹣时,求四边形CQBP面积的最大值与点P的坐标;
(3)如图2,点C1与点C关于抛物线对称轴对称.将抛物线y沿直线AD平移,平移后的抛物线记为y1,y1的顶点为D1,将抛物线y1沿x轴翻折,翻折后的抛物线记为y2,y2的顶点为D2.在(2)的条件下,点P平移后的对应点为P1,在平移过程中,是否存在以P1D2为腰的等腰△C1P1D2,若存在请直接写出点D2的横坐标,若不存在请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)当m=时,S四边形CQBP取得最大值,此时P点坐标为(,);(3)存在,满足要求的D2的横坐标有:,,,.
【解析】
(1)将A、C两点坐标代入抛物线解析式当中求出a与c的值即可;
(2)先求出B、F坐标,然后可以证明AF与BC平行,于是△QBC的面积就等于△ABC的面积,问题就转化为求△PBC的面积的最大值,作PE∥y轴交直线BC于E,设P点的横坐标为未知数m,将E点坐标也用m表示,PE的长度用P、E纵坐标之差表示,于是△PBC的面积就可以表示成关于m的二次函数,通过配方法即可求出最值及P点坐标.
(3)由于限定了以P1D2为腰,因此分两大类分别列方程计算即可.
(1)将A(﹣1,0)、C(0,3)代入抛物线解析式得:
解得:,
∴抛物线的解析式为y=﹣x2+2x+3.
(2)如图1,连接BC,AC,作PE∥y轴交BC于E.
∵y=﹣x2+2x+3=﹣(x+1)(x﹣3).
∴B(3,0),
∵b=﹣,
∴F(0,﹣),
∴=,
∴AF∥BC,
∴S△QBC=S△ABC=ABOC=6,
由B、C两点坐标可得直线BC的解析式为:y=﹣x+3,
设P(m,﹣m2+2m+3),则E(m,﹣m+3),
PE=yP﹣yE=﹣m2+4m,
∴S△PBC=(xB﹣xC)(yP﹣yE)=﹣m2+6m=﹣(m﹣)2+,
∴S四边形CQBP=S△QBC+S△PBC=S△ABC+S△PBC=﹣(m﹣)2+,
∴当m=时,S四边形CQBP取得最大值,此时P点坐标为(,).
(3)∵y=﹣x2+2x+3=,
∴D(1,4),抛物线对称轴为x=1,
∵C1与C关于直线x=1对称,
∴C1(2,3),
由A、D两点坐标可求得直线AD的解析式为y=2x+2,
设D1(m,2m+2),
则P1(m+,2m+),D2(m,﹣2m﹣2),
∴,,
,
当P1C1=P1D2时,=,解得,.
当C1D2=P1D2时,9m2+36m+54=,解得,.
综上所述,满足要求的D2的横坐标有:,,,.
科目:初中数学 来源: 题型:
【题目】如图,两个三角形纸板,能完全重合,,,,将绕点从重合位置开始,按逆时针方向旋转,边,分别与,交于点,(点不与点,重合),点是的内心,若,点运动的路径为,则图中阴影部分的面积为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,顶点A(﹣1,0),C(1,2),点F是BC的中点,CD与y轴交于点E,AF与BE交于点G.将正方形ABCD绕点O顺时针旋转,每次旋转90°,则第99次旋转结束时,点G的坐标为( )
A.(,)B.(﹣,)C.(﹣,)D.(,﹣)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,平行四边形ABCD的边AB在y轴上,点D(4,4),cos∠BCD=,若反比例函数y=(k≠0)的图象经过平行四边形对角线的交点E,则k的值为( )
A.14B.7C.8D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2020年注定是不平凡的一年,新年伊始,一场突如其来的疫情席卷全国,全国人民万众一心,抗战疫情.为了早日取得抗疫的胜利,各级政府、各大新闻媒体都加大了对防疫知识的宣传.某校为了了解初一年级共480名同学对防疫知识的掌握情况,对他们进行了防疫知识测试.现随机抽取甲、乙两班各15名同学的测试成绩(满分100分)进行整理分析,过程如下:
(收集数据)
甲班15名学生测试成绩分别为:78,83,89,97,98,85,100,94,87,90,93,92,99,95;100.
乙班15名学生测试成绩中90≤x<95的成绩如下:91,92,94,90,93
(整理数据):
班级 | 75≤x<80 | 80≤x<85 | 85≤x<90 | 90≤x<95 | 95≤x<100 |
甲 | 1 | 1 | 3 | 4 | 6 |
乙 | 1 | 2 | 3 | 5 | 4 |
(分析数据):
班级 | 平均数 | 众数 | 中位数 | 方差 |
甲 | 92 | a | 93 | 47.3 |
乙 | 90 | 87 | b | 50.2 |
(应用数据):
(1)根据以上信息,可以求出:a=_____分,b=______分;
(2)若规定测试成绩92分及其以上为优秀,请估计参加防疫知识测试的480名学生中成绩为优秀的学生共有多少人;
(3)根据以上数据,你认为哪个班的学生防疫测试的整体成绩较好?请说明理由(一条理由即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据道路交通法规规定:普通桥梁一般限速40km/h.为了安全,交通部门在桥头竖立警示牌:“请勿超速”,并监测摄像系统监控,如图,在某直线公路L路桥段BC内限速40km/h,为了检测车辆是否超速,在距离公路L500米旁的A处设立了观测点,从观测点A测得一小车从点B到达点C行驶了30秒钟,已知∠ABL=45°,∠ACL=30°,此车超速了吗?请说明理由.(参考数据:=1.41,=1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在5×5的网格中,横、纵坐标均为整点的数叫做格点,例如(0,1)、B(2,1)、C(3,3)都是格点,现仅用无刻度的直尺在网格中做如下操作:
(1)直接写出点A关于点B旋转180°后对应点M的坐标 ;
(2)画出线段BE,使BE⊥AC,其中E是格点,并写出点E的坐标 ;
(3)找格点F,使∠EAF=∠CAB,画出∠EAF,并写出点F的坐标 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知等腰直角△ABC,∠C=90°,AC=2,D为边AC上一动点,连结BD,在射线BD上取一点E使BEBD=AB2.若点D由A运动到C,则点E运动的路径长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.
(1)求抛物线的函数解析式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式;
②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com