СÃ÷ͬѧ°Ñ¶àÏîʽ£¨x2+6x+10£©£¨x2+6x+8£©+1·Ö½âÒòʽµÄ¹ý³Ì£º
Éèx2+6x=y£¬Ôò
ԭʽ=£¨y+10£©£¨y+8£©+1  £¨µÚÒ»²½£©
=y2+18y+81             £¨µÚ¶þ²½£©
=£¨y+9£©2              £¨µÚÈý²½£©
=£¨x2+6x+9£©2          £¨µÚËIJ½£©
£¨1£©¸Ãͬѧ´ÓµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄ
 
£®
A£®ÌáÈ¡¹²Òòʽ·¨
B£®Æ½·½²î¹«Ê½
C£®Á½ÊýºÍµÄÍêȫƽ·½¹«Ê½
D£®Á½Êý²îµÄÍêȫƽ·½¹«Ê½
£¨2£©Ð¡Ã÷ͬѧµÄÒòʽ·Ö½âÊÇ·ñ³¹µ×£¿Èô²»³¹µ×£¬ÇëÄãÖ±½Óд³öÒòʽ·Ö½âµÄ×îºó½á¹û£®
£¨3£©ÒÀ¾ÝÉÏÌâµÄ½â·¨³¢ÊÔ¶Ô£¨x2+4x-3£©£¨x2+4x-7£©+4½øÐÐÒòʽ·Ö½â£®
¿¼µã£ºÒòʽ·Ö½â-ÔËÓù«Ê½·¨
רÌ⣺ÔĶÁÐÍ
·ÖÎö£º£¨1£©¸ù¾Ý»»Ôª·¨£¬¿É·Ö½âÒòʽ£¬¸ù¾ÝÍêȫƽ·½¹«Ê½£¬¿ÉµÃ´ð°¸£»
£¨2£©¸ù¾ÝÍêȫƽ·½¹«Ê½£¬¿É·Ö½âÒòʽ£»
£¨3£©¸ù¾Ý»»Ôª·¨£¬Ê®×ÖÏà³Ë·¨£¬¿É·Ö½âÒòʽ£®
½â´ð£º½â£º£¨1£©£¨1£©¸Ãͬѧ´ÓµÚ¶þ²½µ½µÚÈý²½ÔËÓÃÁËÒòʽ·Ö½âµÄA£¬
¹Ê´ð°¸Îª£ºA£»
£¨2£©=£¨x2+6x+9£©2=[£¨x+3£©2]2=£¨x+3£©4£»
£¨3£©Éèy=x2+6x£¬µÃ
ԭʽ=£¨y-3£©£¨y-7£©+4
=y2-10y+25
=£¨y+5£©2
=£¨x2+6x+5£©2
=[£¨x+1£©£¨x+5£©]2£®
µãÆÀ£º±¾Ì⿼²éÁËÒòʽ·Ö½â£¬»»·¨ÊǽâÌâ¹Ø¼ü£¬×¢Òâ·Ö½âÒª³¹µ×£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺|-4|-22+
12
-tan60¡ã£¨ËµÃ÷£º±¾Ìâ²»ÔÊÐíʹÓüÆËãÆ÷¼ÆË㣩

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÏÂÁкϲ¢Í¬ÀàÏîÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢3x+3y=6xy
B¡¢5x-3x=2
C¡¢3x+2x=6x
D¡¢12ab-12ba=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

һȺ¶ìһȺ¹·£¬¶ìÍ·¹·Í·ÎåÊ®Î壬һ°ÙÎåÊ®ÌõÍÈÆë²½×ߣ¬¶àÉÙÖ»¶ì¶àÉÙÖ»¹·£¿Éè¶ìÓë¹··Ö±ðΪx£¬yÖ»£¬ÓÉÌâÒâ¿ÉÁгö·½³Ì×é
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÀ¨ºÅÄÚÌîÉÏÊʵ±µØÕûʽ£¬Ê¹ÏÂÁеÈʽ³ÉÁ¢£º
£¨1£©
a+b
ab
=
()
a2b
£»
£¨2£©
x2+xy
x2
=
()
x
£»
£¨3£©
()
xy
=
2y
2xy2
£»
£¨4£©
m2+m
mn
=
()
m
£»
£¨5£©
-(a-b)
m
=
ac-bc
-()
£»
£¨6£©
2a2+2ab
3ab+3b2
=
2a
()
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÇóÏÂÁи÷ÊýµÄ¾ø¶ÔÖµ£®
£¨1£©
3-8
£»
£¨2£©
17
£»
£¨3£©
3
-1.7£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£º
a
b
=
2
3
£¬
a+5
b+x
=
2
3
£¬ÇóxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÓÐ4¸ùľ°ô£¬ËüÃǵij¤¶È·Ö±ðΪ5cm¡¢7cm¡¢9cm¡¢12cm£¬´ÓÖÐÑ¡ÔñÈý¸ùÊ×βÏà½Ó´î³ÉÒ»¸öÈý½ÇÐΣ¬ÓÐ
 
ÖÖ²»Í¬µÄÑ¡Ôñ·½·¨£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÓÐÀíÊýa¡¢b¡¢cÂú×ã|a-1|+£¨3b+1£©2+£¨c+2£©2=0£¬Çó£¨-3ab£©•£¨-a2c£©•6abµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸