精英家教网 > 初中数学 > 题目详情

【题目】已知函数为实数)

1)当时,若= ,则此函数是一次函数;

2)若它是一个二次函数,假设,那么:

①当时,的增大而减小,请判断这个命题的真假并说明理由;

②它一定经过哪个点?请说明理由.

【答案】(1)m=1;(2)①见解析;②见解析.

【解析】

1)由一次函数的定义可知,自变量x的最高次幂为一次,可得到m的值;

2)若函数为二次函数,则m=2,再根据抛弧线的开口方向和对称轴判断增减性,通过x的取值得到的函数值y中不含有未知数n时,则函数图像过定点.

解:(1)由一次函数可知,

代入后得,,由于,因此函数为一次函数,

所以.

2)①假命题,若它是一个二次函数,

,函数

抛物线开口向上,

对称轴:

对称轴在轴左侧,当时,有可能随的增大而增大,也可能随的增大而减小,

②当时,

时,

它一定经过点

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】红和小华都想去参加学校组织的演讲比赛,但现在名额只有一个,于是小英想出了一个办法:让小红和小华分别转动下图的甲、乙两个转盘(转盘甲被二等分、转盘乙被四等分),在两个转盘都停止转动后,若指针所指的两个数字之和为偶数,则小红去;若指针所指的两个数字之和为奇数,则小华去,你认为这个方法公平吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点的坐标分别为,抛物线的顶点在线段上运动(抛物线随顶点一起平移),与轴交于两点(的左侧),点的横坐标最小值为-6,则点的横坐标最大值为(

A.-3B.1C.5D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,AB=AC,∠BAC=36°,过点A作ADBC,与ABC的平分线交于点D,BD与AC交于点E,与O交于点F.

(1)求DAF的度数;

(2)求证:AE2=EFED;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB的长为10,弦AC的长为5,∠ACB的平分线交O于点D.

(1)∠ADC的度数;

(2)求弦BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知y=﹣xx+3a+1是关于x的二次函数,当1≤x≤5时,如果yx1时取得最小值,则实数a的取值范围是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).

(1)画出ABC向下平移4个单位长度得到的A1B1C1,点C1的坐标是 

(2)以点B为位似中心,在网格内画出A2B2C2,使A2B2C2ABC位似,且位似比为2:1,点C2的坐标是   

(3)A2B2C2的面积是   平方单位.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,函数y=的图像与xy轴分别交于点AB.AB为直径作M.

1)求AB的长;

2)点DM上任意一点,且点D在直线AB上方,过点DDHAB,垂足为H,连接BD.

①当BDH中有一个角等于BAO两倍时,求点D的坐标;

②当DBH=45°时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=-x-3x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是_______

查看答案和解析>>

同步练习册答案