分析 根据题意求出∠BAD=∠ADB=45°,进而根据等腰直角三角形的性质求得FD,在Rt△GEH中,利用特殊角的三角函数值分别求出BF,即可求得PG,在Rt△AGP中,继而可求出AB的长度.
解答
解:由题意可知∠BAD=∠ADB=45°,
∴FD=EF=9米,AB=BD
在Rt△GEH中,∵tan∠EGH=$\frac{EH}{GH}$=$\frac{8}{GH}$,即$\frac{8}{GH}=\frac{\sqrt{3}}{3}$,
∴BF=8$\sqrt{3}$,
∴PG=BD=BF+FD=8$\sqrt{3}$+9,
AB=(8$\sqrt{3}$+9)米≈23米,
答:办公楼AB的高度约为23米.
点评 本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 3cm | B. | 6cm | C. | 12cm | D. | 16cm |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | x1+x2=-1 | B. | x1+x2=-3 | C. | x1+x2=1 | D. | x1+x2=3 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\left\{\begin{array}{l}{x=1}\\{y=-2}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x=-1}\\{y=-2}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x=-1}\\{y=2}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | ②③④ | B. | ①②④ | C. | ①③④ | D. | ①②③ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | s=450 | B. | s=600 | C. | s=750 | D. | s=900 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com