【题目】某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm,
(1)用含x的代数式表示扇形O2CD的半径;
(2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45元/cm2和0.06元/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?
【答案】(1)扇形O2CD的半径为(24-3x)cm;(2)当⊙O1的半径为4cm时,该玩具的制作成本最小.
【解析】
(1)连接O1A.利用切线的性质知∠AO2O1=∠CO2D=30°;然后在Rt△O1AO2中利用“30°角所对的直角边是斜边的一半”求得O1O2=2xcm;最后由图形中线段间的和差关系求得扇形O2CD的半径FO2为:EF-EO1-O1O2=(24-3x)cm;
(2)设该玩具的制作成本为y元,则根据圆形的面积公式和扇形的面积公式列出y与x间的函数关系,然后利用二次函数的最值即可求得结果.
解:(1)连接O1A.
∵⊙O1与O2C、O2D分别切一点A、B,
∴O1A⊥O2C,O2E平分∠CO2D,
∴∠AO2O1=∠CO2D=30°,
∴在Rt△O1AO2中,O1O2=2AO1=2x cm.
∴FO2=EF-EO1-O1O2=(24-3x)cm,
即扇形O2CD的半径为(24-3x)cm.
(2)设该玩具的制作成本为y元,则
y=0.45πx2+0.06×=0.9πx2-7.2πx+28.8π=0.9π(x-4)2+14.4π,
所以当x=4时,y的值最小.
答:当⊙O1的半径为4cm时,该玩具的制作成本最小.
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线y=﹣x2+x+2与x轴交于A、B两点,与y轴交于C点,抛物线的顶点为Q,连接BC.
(1)求直线BC的解析式;
(2)点P是直线BC上方抛物线上的一点,过点P作PD⊥BC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;
(3)如图②,直线AQ交y轴于G,取线段BC的中点K,连接OK,将△GOK沿直线AQ平移得△G′O'K′,将抛物线y=﹣x2+x+2沿直线AQ平移,记平移后的抛物线为y′,当抛物线y′经过点Q时,记顶点为Q′,是否存在以G'、K'、Q'为顶点的三角形是等腰三角形?若存在,求出点G′的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线y=﹣x+2与x轴交于点B,与y轴交于点C,抛物线y=-x2+bx+c经过B、C两点,点P是抛物线上的一个动点,过点P作PQ⊥x轴,垂足为Q,交直线y=﹣x+2于点D.设点P的横坐标为m.
(1)求该抛物线的函数表达式;
(2)若以P、D、O、C为顶点的四边形是平行四边形,求点Q的坐标;
(3)如图2,当点P位于直线BC上方的抛物线上时,过点P作PE⊥BC于点E,求当PE取得最大值时点P的坐标,并求PE的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A、B的坐标分别为
A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】红树林学校在七年级新生中举行了全员参加的“防溺水”安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:
1班:90,70,80,80,80,80,80,90,80,100;
2班:70,80,80,80,60,90,90,90,100,90;
3班:90,60,70,80,80,80,80,90,100,100.
整理数据:
分数 人数 班级 | 60 | 70 | 80 | 90 | 100 |
1班 | 0 | 1 | 6 | 2 | 1 |
2班 | 1 | 1 | 3 | 1 | |
3班 | 1 | 1 | 4 | 2 | 2 |
分析数据:
平均数 | 中位数 | 众数 | |
1班 | 83 | 80 | 80 |
2班 | 83 | ||
3班 | 80 | 80 |
根据以上信息回答下列问题:
(1)请直接写出表格中的值;
(2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;
(3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图1,直线,所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线?
小明的做法是:
(1)如图2,画;
(2)以为圆心,任意长为半径画圆弧,分别交直线,于点,;
(3)连结并延长交直线于点;
请你先完成下面的证明,然后完成第(4)步作图:
∵
∴( )
∵以为圆心,任意长为半径画圆弧,分别交直线,于点,
∴
∴
∴
∴以直线,的交点和点、为顶点所构成的三角形为等腰三角形( )
根据上面的推理证明完成第(4)步作图
(4)请在图2画板内作出“直线,所成的跑到画板外面去的角”的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.
第(4)步这么作图的理论依据是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在和中,,,,点,,分别是,,的中点,连接,.
(1)如图①,,点在上,则 ;
(2)如图②,,点不在上,判断的度数,并证明你的结论;
(3)连接,若,,固定,将绕点旋转,当的长最大时,的长为 (用含的式子表示).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com