精英家教网 > 初中数学 > 题目详情

【题目】某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1O2CO2D分别切于点AB,已知∠CO2D60°EF是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF24cm,设⊙O1的半径为xcm

1)用含x的代数式表示扇形O2CD的半径;

2)若⊙O1和扇形O2CD两个区域的制作成本分别为0.45/cm20.06/cm2,当⊙O1的半径为多少时,该玩具的制作成本最小?

【答案】1)扇形O2CD的半径为(24-3xcm;(2)当⊙O1的半径为4cm时,该玩具的制作成本最小.

【解析】

1)连接O1A.利用切线的性质知∠AO2O1=CO2D=30°;然后在RtO1AO2中利用“30°角所对的直角边是斜边的一半”求得O1O2=2xcm;最后由图形中线段间的和差关系求得扇形O2CD的半径FO2为:EF-EO1-O1O2=24-3xcm
2)设该玩具的制作成本为y元,则根据圆形的面积公式和扇形的面积公式列出yx间的函数关系,然后利用二次函数的最值即可求得结果.

解:(1)连接O1A


∵⊙O1O2CO2D分别切一点AB
O1AO2CO2E平分∠CO2D
∴∠AO2O1=CO2D=30°,
∴在RtO1AO2中,O1O2=2AO1=2x cm
FO2=EF-EO1-O1O2=24-3xcm

即扇形O2CD的半径为(24-3xcm
2)设该玩具的制作成本为y元,则
y=0.45πx2+0.06×=0.9πx2-7.2πx+28.8π=0.9π(x-42+14.4π,
所以当x=4时,y的值最小.
答:当⊙O1的半径为4cm时,该玩具的制作成本最小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=﹣x2+x+2x轴交于AB两点,与y轴交于C点,抛物线的顶点为Q,连接BC

1)求直线BC的解析式;

2)点P是直线BC上方抛物线上的一点,过点PPDBC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;

3)如图②,直线AQy轴于G,取线段BC的中点K,连接OK,将GOK沿直线AQ平移得GO'K,将抛物线y=﹣x2+x+2沿直线AQ平移,记平移后的抛物线为y,当抛物线y经过点Q时,记顶点为Q,是否存在以G'K'Q'为顶点的三角形是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形是正方形,分别是的延长线上的点,且,连接

(1)求证:

(2),求的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,直线y=﹣x+2x轴交于点B,与y轴交于点C,抛物线y-x2+bx+c经过BC两点,点P是抛物线上的一个动点,过点PPQx轴,垂足为Q,交直线y=﹣x+2于点D.设点P的横坐标为m

1)求该抛物线的函数表达式;

2)若以PDOC为顶点的四边形是平行四边形,求点Q的坐标;

3)如图2,当点P位于直线BC上方的抛物线上时,过点PPEBC于点E,求当PE取得最大值时点P的坐标,并求PE的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A、B的坐标分别为

A(6,0)、B(0,2),以AB为斜边在右上方作Rt△ABC.设点C坐标为(x,y),则(x+y)的最大值为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AD=6,点E是边CD上的动点(点E不与端点C,D重合),AE的垂直平分线FG分别交AD,AE,BC于点F,H,G.当=时,DE的长为( )

A. 2 B. C. D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】红树林学校在七年级新生中举行了全员参加的防溺水安全知识竞赛,试卷题目共10题,每题10分.现分别从三个班中各随机取10名同学的成绩(单位:分),收集数据如下:

1班:907080808080809080100

2班:708080806090909010090

3班:9060708080808090100100

整理数据:

分数

人数

班级

60

70

80

90

100

1

0

1

6

2

1

2

1

1

3

1

3

1

1

4

2

2

分析数据:

平均数

中位数

众数

1

83

80

80

2

83

3

80

80

根据以上信息回答下列问题:

1)请直接写出表格中的值;

2)比较这三组样本数据的平均数、中位数和众数,你认为哪个班的成绩比较好?请说明理由;

3)为了让学生重视安全知识的学习,学校将给竞赛成绩满分的同学颁发奖状,该校七年级新生共570人,试估计需要准备多少张奖状?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,直线所成的角跑到画板外面去了,你有什么办法作出这两条直线所成角的角平分线?

小明的做法是:

1)如图2,画

2)以为圆心,任意长为半径画圆弧,分别交直线于点

3)连结并延长交直线于点

请你先完成下面的证明,然后完成第(4)步作图:

∵以为圆心,任意长为半径画圆弧,分别交直线于点

∴以直线的交点和点为顶点所构成的三角形为等腰三角形(

根据上面的推理证明完成第(4)步作图

4)请在图2画板内作出直线所成的跑到画板外面去的角的平分线(画板内的部分),尺规作出图形,并保留作图痕迹.

第(4)步这么作图的理论依据是:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,点分别是的中点,连接

1)如图①,,点上,则

2)如图②,,点不在上,判断的度数,并证明你的结论;

3)连接,若,固定,将绕点旋转,当的长最大时,的长为 (用含的式子表示).

查看答案和解析>>

同步练习册答案