精英家教网 > 初中数学 > 题目详情

【题目】我国元朝朱世杰所著的《算学启蒙》(1299年)一书中有一道题目是:今有良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何日追及之.译文是:快马每天走240里,慢马每天走150里.慢马先走12天,快马几天可以追上慢马?

1)设快马x天可以追上慢马,请你将如下的线段图补充完整:

2)根据(1)中线段图所反映的数量关系,列方程解决问题.

【答案】1)见解析;(2240x150x150×12,快马20天可以追上慢马,见解析

【解析】

设快马x天可以追上慢马,根据慢马先行的路程=快慢马速度之差×快马行走天数,即可列出关于x的一元一次方程,解之即可得出结论.

解:(1)如图所示:

2)设快马x天可以追上慢马,

由题意,得240x150x150×12

解得:x20

答:快马20天可以追上慢马.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了打造铁力旅游景点,市旅游局打算将依吉密河中一段长1800米的河道整治任务交由甲、乙两个工程队来完成.已知,甲工程队每天整治60米,乙工程队每天整治40米.

(1)若甲、乙两个工程队接龙来完成,共用时35天,求甲、乙两个工程队分别整治多长的河道?

(2)若乙工程队先整治河道10天,甲工程队再参加两个工程队一起来完成剩余河道整治任务,求整段河道整治任务共用时多少天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线ABx轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t0).

(1)求直线AB的解析式;

(2)在点POA运动的过程中,求△APQ的面积St之间的函数关系式(不必写出t的取值范围);

(3)在点EBO运动的过程中,完成下面问题:

①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;

②当DE经过点O时,请你直接写出t的值.

【答案】(1)直线AB的解析式为;(2)S=﹣t2+t;

(3)四边形QBED能成为直角梯形.①t=②当DE经过点O时,t=

【解析】分析:(1)首先由在RtAOB,OA=3,AB=5,求得OB的值,然后利用待定系数法即可求得一次函数的解析式;
(2)过点QQFAO于点F.由△AQF∽△ABO,根据相似三角形的对应边成比例,借助于方程即可求得QF的长,然后即可求得的面积St之间的函数关系式;
(3)①分别从DEQBPQBO去分析,借助于相似三角形的性质,即可求得t的值;
②根据题意可知即时,则列方程即可求得t的值.

详解:(1)RtAOB,OA=3,AB=5,由勾股定理得

A(3,0),B(0,4).

设直线AB的解析式为y=kx+b.

.解得

∴直线AB的解析式为

(2)如图1,过点QQFAO于点F.

AQ=OP=tAP=3t.

由△AQF∽△ABO,

(3)四边形QBED能成为直角梯形,

①如图2,DEQB时,

DEPQ

PQQB,四边形QBED是直角梯形.

此时

由△APQ∽△ABO,

解得

如图3,PQBO时,

DEPQ

DEBO,四边形QBED是直角梯形.

此时

由△AQP∽△ABO,

3t=5(3t),

3t=155t

8t=15,

解得

(PA0运动的过程中还有两个,但不合题意舍去).

②当DE经过点O时,

DE垂直平分PQ

EP=EQ=t

由于PQ相同的时间和速度,

AQ=EQ=EP=t

∴∠AEQ=EAQ

∴∠BEQ=EBQ

BQ=EQ

所以

PAO运动时,

过点QQFOBF

EP=6t,

EQ=EP=6t

AQ=tBQ=5t

解得:

∴当DE经过点O, .

点睛:本题考查知识点较多,勾股定理,待定系数法求一次函数解析式,相似三角形的判定与性质等知识点,熟练掌握和运用各个知识点是解题的关键.

型】解答
束】
21

【题目】如图,反比例函数y(m0)与一次函数y=kx+b(k0)的图象相交于A、B两点,点A的坐标为(-6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.

(1)请用两种方法表示阴影部分的面积

1得: 2

(2)由图1与图2 面积关系,可以得到一个等式:

(3)利用(2)中的等式,已知,且a+b=8,则a-b= .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)阅读理解:如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,试判断AB,AD,DC之间的等量关系.

解决此问题可以用如下方法:延长AE交DC的延长线于点F,易证△AEB≌△FEC,得到AB=FC,从而把AB,AD,DC转化在一个三角形中即可判断.

AB、AD、DC之间的等量关系为   

(2)问题探究:如图②,在四边形ABCD中,AB∥DC,AF与DC的延长线交于点F,E是BC的中点,若AE是∠BAF的平分线,试探究AB,AF,CF之间的等量关系,并证明你的结论.

(3)问题解决:如图③,AB∥CF,AE与BC交于点E,BE:EC=2:3,点D在线段AE上,且∠EDF=∠BAE,试判断AB、DF、CF之间的数量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2+bx+ca≠0)的图象如下图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了增强学生的身体素质,某校坚持长年的全员体育锻炼,并定期进行体能测试,下面是将某班学生的立定跳远成绩(精确到0.01m),进行整理后,分成5组,画了的频率分布直方图的部分,已知:从左到右4个小组的频率分别是:0.050.150.300.35,第五小组的频数是9

1)该班参加测试的人数是多少?

2)补全频率分布直方图.

3)若该成绩在2.00m(含2.00)的为合格,问该班成绩合格率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC为等边三角形,点DE分别在直线ABBC上,且AD=BE.

1)如图1,若点DE分别是ABCB边上的点,连接AECD交于点F,过点EAEG=60°,使EG=AE,连接GD,则AFD= (填度数);

2)在(1)的条件下,猜想DGCE存在什么关系,并证明;

3)如图2,若点DE分别是BACB延长线上的点,(2)中结论是否仍然成立?请给出判断并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上). 已知AB=80m,DE=10m,求障碍物B,C两点间的距离.(结果精确到0.1m)

(参考数据:

查看答案和解析>>

同步练习册答案