【题目】如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(l)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探宄:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证)
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
【答案】(1)四边形ABCD是垂美四边形,理由见解析;(2)猜想结论:垂美四边形的两组对边的平方和相等,过程见解析;(3)GE=
【解析】试题分析:(1)根据垂直平分线的判定定理可得,直线AC是线段BD的垂直平分线,结论得证;
(2)根据垂直的定义可得∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得AD2+BC2=AE2+DE2+BE2+CE2,进而得到答案;
(3)连接CG、BE,由题意易得△GAB≌△CAE,可知∠ABG=∠AEC,进而得到四边形BCGE是垂美四边形;接下来根据垂美四边形的性质、勾股定理以及(2)的结论进行计算求解,即可完成解答.
试题解析:
解:(1)四边形ABCD是垂美四边形.
证明:∵AB=AD,
∴点A在线段BD的垂直平分线上,
∵CB=CD,
∴点C在线段BD的垂直平分线上,
∴直线AC是线段BD的垂直平分线,
∴AC⊥BD,即四边形ABCD是垂美四边形;
(2)猜想结论:垂美四边形的两组对边的平方和相等.
如图2,已知四边形ABCD中,AC⊥BD,垂足为E,
求证:AD2+BC2=AB2+CD2
证明:∵AC⊥BD,
∴∠AED=∠AEB=∠BEC=∠CED=90°,
由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,
AB2+CD2=AE2+BE2+CE2+DE2,
∴AD2+BC2=AB2+CD2;
(3)连接CG、BE,
∵∠CAG=∠BAE=90°,
∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,
在△GAB和△CAE中,
,
∴△GAB≌△CAE,
∴∠ABG=∠AEC,又∠AEC+∠AME=90°,
∴∠ABG+∠AME=90°,即CE⊥BG,
∴四边形CGEB是垂美四边形,
由(2)得,CG2+BE2=CB2+GE2,
∵AC=4,AB=5,
∴BC=3,CG=4,BE=5
,
∴GE2=CG2+BE2﹣CB2=73,
∴GE=.
科目:初中数学 来源: 题型:
【题目】将抛物线y=2x2向右平移3个单位,再向下平移5个单位,得到的抛物线的表达式为( )
A.y=2(x﹣3)2﹣5
B.y=2(x+3)2+5
C.y=2(x﹣3)2+5
D.y=2(x+3)2﹣5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某电脑公司销售部为了定制下个月的销售计划,对20位销售员本月的销售量进行了统计I绘制成如图所示的统计图,则这20位销售人员本月销售量的平均数、中位数、众数分别是( )
A. 19,20,14 B. 18.4,20,20 C. 19, 20, 20 D. 18.4,25,20
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)用直尺和圆规在边BC上找一点D,使D到AB的距离等于CD.
(2)计算(1)中线段CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+3与x轴交于点C,与y轴交于点B,抛物线y=ax2+
x+c经过B、C两点.
(1)求抛物线的解析式;
(2)如图,点E是直线BC上方抛物线上的一动点,当△BEC面积最大时,请求出点E的坐标和△BEC面积的最大值?
(3)在(2)的结论下,过点E作y轴的平行线交直线BC于点M,连接AM,点Q是抛物线对称轴上的动点,在抛物线上是否存在点P,使得以P、Q、A、M为顶点的四边形是平行四边形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com