【题目】如果记y==f(x),并且f(1)表示当x=1时y的值.即f(1)==;f()表示当x=时y的值,f()==…,那么f(﹣1)+f(﹣2)+f(﹣)+f(﹣3)+f(﹣)+…+f(﹣2019)+f(﹣)=_____.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线经过点A(-1,0),B(4,0),C(0,2)三点,点D与点C关于x轴对称,点P是线段AB上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式;
(2)在点P运动过程中,是否存在点Q,使得△BQM是直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)连接AC,将△AOC绕平面内某点H顺时针旋转90°,得到△A1O1C1,点A、O、C的对应点分别是点A、O1、C1、若△A1O1C1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“和谐点”,请直接写出“和谐点”的个数和点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,点与点在同侧,,且,过点作交于点为的中点,连接.
(1)如图1,当时,线段与的数量关系是 ;
(2)如图2,当时,试探究线段与的数量关系,并证明你的结论;
(3)如图3,当时,求的值.
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠A、∠B、∠C所对的边分别用a、b、c表示.
(1)如图①,在△ABC中,∠A=2∠B,且∠A=60°.求证:a2=b(b+c)
(2)如图②,在△ABC中,最大角∠A是最小角∠C的2倍,且c=7,b=8,求a的长.
(3)若一个三角形的一个内角等于另一个内角的2倍,我们则称这样的三角形为“倍角三角形”.问题(1)中的三角形是一个特殊的倍角三角形,那么对于任意的倍角△ABC,如图③,∠A=2∠B,关系式a2=b(b+c)是否仍然成立?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知BC是⊙O的弦,A是⊙O外一点,△ABC为正三角形,D为BC的中点,M为⊙O上一点.
(1)若AB是⊙O的切线,求∠BMC;
(2)在(1)的条件下,若E,F分别是AB,AC上的两个动点,且EDF120,⊙O的半径为2,试问BECF的值是否为定值?若是,求出这个定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形中,,,点是这个菱形内部或边上的一点,若以点,,为顶点的三角形是等腰三角形,则,(,两点不重合)两点间的最短距离为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线,经过A(1,0)、B(7,0)两点,交y轴于D点,以AB为边在x轴上方作等边△ABC.
(1)求抛物线的解析式;
(2)在x轴上方的抛物线上是否存在点M,是S△ABM=S△ABC?若存在,请求出点M的坐标;若不存在,请说明理由;
(3)如图2,E是线段AC上的动点,F是线段BC上的动点,AF与BE相交于点P.
①若CE=BF,试猜想AF与BE的数量关系及∠APB的度数,并说明理由;
②若AF=BE,当点E由A运动到C时,请直接写出点P经过的路径长(不需要写过程).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com