【题目】一般地,对于已知一次函数y1=ax+b,y2=cx+d(其中a,b,c,d为常数,且ac<0),定义一个新函数y=,称y是y1与y2的算术中项,y是x的算术中项函数.
(1)如:一次函数y1=x﹣4,y2=﹣x+6,y是x的算术中项函数,即y=.
①自变量x的取值范围是 ,当x= 时,y有最大值;
②根据函数研究的途径与方法,请填写下表,并在图1中描点、连线,画出此函数的大致图象;
x | 8 | 9 | 10 | 12 | 13 | 14 | 16 | 17 | 18 |
y | 0 | 1.2 | 1.6 |
| 2.04 | 2 |
| 1.2 | 0 |
③请写出一条此函数可能有的性质 ;
(2)如图2,已知一次函数y1=x+2,y2=﹣2x+6的图象交于点E,两个函数分别与x轴交于点A,C,与y轴交于点B,D,y是x的算术中项函数,即y=.
①判断:点A、C、E是否在此算术中项函数的图象上;
②在平面直角坐标系中是否存在一点,到此算术中项函数图象上所有点的距离相等,如果存在,请求出这个点;如果不存在,请说明理由.
【答案】①8≤x≤18,13;②2,1.7,画图见解析;③8<x<13时,y随x的增大而增大和13<x<18时,y随x的增大而减小(答案不唯一);(2)①点A、C、E在此算术中项函数的图象上;②存在,(﹣,0)
【解析】
(1)①转化为二次不等式求出c的取值范围,利用二次函数的性质求出最大值.
②把x=12,x=16代入函数解析式求函数值即可,利用描点法画出函数图象即可.
③观察函数图象,写出函数的性质即可.
(2)①求出A,C,E的坐标,利用待定系数法判断即可.
②不存在,首先根据A,E,C确定这个点的坐标,然后取x=0,求出算术中项函数图象上的点的坐标验证即可.
解:(1)①由题意(x﹣4)(﹣x+6)≥0,
解得8≤x≤18,
∵y=,
∵﹣<0,
∴x=13时,y有最大值,最大值为.
故答案为8≤x≤18,13.
②x=12时,y==2,
x=16时,y=≈1.7
故答案为2,1.7.
函数图象如图所示:
③性质:8<x<13时,y随x的增大而增大和13<x<18时,y随x的增大而减小;
故答案为:8<x<13时,y随x的增大而增大和13<x<18时,y随x的增大而减小(答案不唯一);
(2)①由题意E(,),A(﹣4,0),C(3,0),
对于函数y=,
当x=时,y=,
∴点E在这个函数的图象上,
当x=﹣4时,y=0,
∴点A在这个函数的图象上,
当x=3时,y=0,
∴点C在这个函数的图象上.
②不存在,由图2可知,∵AE⊥EC,
∴∠AEC=90°,
到A,C,E距离相等的点是AC的中点T(﹣,0),这个距离是3.5,
∵算术中项函数图象上的点P[x,],
PT=,
∴存在这样的点(﹣,0)到此算术中项函数图象上所有点的距离相等.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标平面内,函数y=(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB.
(1)求反比例函数的解析式;
(2)若△ABD的面积为4,求点B的坐标;
(3)求证:DCAB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一段6000米的道路由甲乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队每天完成工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少用10天.
(1)求甲、乙两工程队每天各完成多少米?
(2)如果甲工程队每天需工程费7000元,乙工程队每天需工程费5000元,若甲队先单独工作若干天,再由甲乙两工程队合作完成剩余的任务,支付工程队总费用不超过79000元,则两工程队最多可以合作施工多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“天空之城”摩天轮,位于宁波市杭州湾新区欢乐世界.摩天轮高约126米(最高点到地面的距离).如图,点O是摩天轮的圆心,AB是其垂直于地面的直径,小明在地面C处用测角仪测得摩天轮最高点A的仰角为45°,测得圆心O的仰角为30°,求摩天轮的半径.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示.下列结论:
①abc<0;②3a+c=0;
③当y>0时,x的取值范围是﹣1≤x<3;
④方程ax2+bx+c﹣3=0有两个不相等的实数根;
⑤点(﹣2,y1),(2,y2)都在抛物线上,则有y1<0<y2.
其中结论正确的个数是( ).
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,直线y=x+4与抛物线y=﹣x2+bx+c(b,c是常数)交于A、B两点,点A在x轴上,点B在y轴上.设抛物线与x轴的另一个交点为点C.
(1)求该抛物线的解析式;
(2)P是抛物线上一动点(不与点A、B重合),
①如图2,若点P在直线AB上方,连接OP交AB于点D,求的最大值;
②如图3,若点P在x轴的上方,连接PC,以PC为边作正方形CPEF,随着点P的运动,正方形的大小、位置也随之改变.当顶点E或F恰好落在y轴上,直接写出对应的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作等腰直角三角形ADE,AD=AE,∠DAE=90.解答下列问题:
(1) 如果AB=AC,∠BAC=90.
①当点D在线段BC上时(与点B不重合),如图乙,线段CE、BD之间的位置关系为,数量关系为.(不用证明)
②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2) 如果AB≠AC,∠BAC≠90,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CE⊥BD(点C、E重合除外)?画出相应的图形,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为4,P 为BC上的动点,连接PA,作PQ⊥PA,PQ交CD于Q,连接AQ ,则AQ的最小值是( )
A.5B.C.D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com