【题目】如图,等腰三角形的三个顶点分别落在反比例函数与的图象上,并且底边经过原点,则__________.
【答案】
【解析】
根据反比例函数图象的对称性可得OA=OB,根据等腰三角形三线合一可证明△AOE∽△OCF,根据相似三角形面积比等于相似比的平方可得,由勾股定理得出即可求得结果.
解:∵函数图象关于原点对称, ∴OA=OB,
连接OC,过A作AE⊥x轴于E,过C作CF⊥x轴于F,
∵△ABC是底边为AB的等腰三角形,
∴AO⊥OC, ∴∠AOC=90°,
∵AE⊥x轴,CF⊥x轴,
∴∠AEO=∠OFC=∠AOE+∠OAE=90°,
∴∠COF=∠OAE,
∴△AOE∽△OCF,
∴
∵顶点A在函数y=图象的分支上,
顶点C在函数y=图象的分支上
∴S△AOE=,S△OCF=,
∴ 即,
在Rt△AOC中,AC=
∴cos∠A= =
故答案为
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,顶点为的抛物线与轴的另一个交点为,连接.
(1)求抛物线的函数表达式;
(2)已知点的坐标为,将抛物线向上平移得到抛物线,抛物线与轴分别交于点(点在点的左侧),如果与相似,求所有符合条件的抛物线的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小夏同学从家到学校有,两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:
公交车用时 频数 公交车路线 | 总计 | ||||
59 | 151 | 166 | 124 | 500 | |
43 | 57 | 149 | 251 | 500 |
据此估计,早高峰期间,乘坐线路“用时不超过35分钟”的概率为__________,若要在40分钟之内到达学校,应尽量选择乘坐__________(填或)线路.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy,对于点P(xp,yp)和图形G,设Q(xQ,yQ)是图形G上任意一点,|xp﹣xQ|的最小值叫点P和图形G的“水平距离”,|yp﹣yQ|的最小值叫点P和图形G的“竖直距离”,点P和图形G的“水平距离”与“竖直距离”的最大值叫做点P和图形G的“绝对距离”
例如:点P(﹣2,3)和半径为1的⊙O,因为⊙O上任一点Q(xQ,yQ)满足﹣1≤xQ≤1,﹣1≤yQ≤1,点P和⊙O的“水平距离”为|﹣2﹣xQ|的最小值,即|﹣2﹣(﹣1)|=1,点P和⊙O的“竖直距离”为|3﹣yQ|的最小值即|3﹣1|=2,因为2>1,所以点P和⊙O的“绝对距离”为2.
已知⊙O半径为1,A(2,),B(4,1),C(4,3)
(1)①直接写出点A和⊙O的“绝对距离”
②已知D是△ABC边上一个动点,当点D与⊙O的“绝对距离”为2时,写出一个满足条件的点D的坐标;
(2)已知E是△ABC边一个动点,直接写出点E与⊙O的“绝对距离”的最小值及相应的点E的坐标
(3)已知P是⊙O上一个动点,△ABC沿直线AB平移过程中,直接写出点P与△ABC的“绝对距离”的最小值及相应的点P和点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校准备开办“书画、器乐、戏曲、棋类”四个兴趣班.为了解学生对兴趣班的选择情况,随机抽取部分学生调查.每人单选一项,结果如下(尚未完善).
求本次调查的学生人数和扇形图中“器乐”对应圆心角的大小.
若全校共有名学生,请估计选择“戏曲”的人数.
学校将从四个兴趣班中任选取两个参加全区青少年才艺展示活动,求恰好抽到“器乐”和“戏曲”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读:设试验结果落在某个区域S中每一点的机会均等,用A表示事件“试验结果落在S中的一个小区域M中”,那么事件A发生的概率P(A).在桌面上放一张50 cm×50 cm的正方形白纸ABCD,⊙O是它的内切圆,小明随机地将1000粒大米撒到该白纸上,其中落在圆内的大米有800粒,由此可得圆周率的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设二次函数,一次函数,若方程的两根是,.
(1)求b、c的值;
(2)当x满足时,比较与x的大小并说明理由;
(3)设点M的坐标是,点P是抛物线上的一个动点,当点P到点M的距离与到直线的距离之和最小时,请直接写出点P坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为更好开展“课后延时”服务,某校抽取了部分七年级学生,就课后活动项目进行调查.学校根据学生前期统计给出了如下四个选项:“球类”、“棋类”、“计算机信息类”、“其他”,并将最终调查结果绘制成如下两幅不完整的统计图.
根据图中提供的信息,解决下列问题:
(1)本次调查共抽取了____名学生,扇形统计图中,类所对应的扇形圆心角大小为
(2)将条形统计图补充完整;
(3)已知选择类的同学有两位来自七(1)班,其余来自七(2)班,调查组准备从选类同学中任选两位做细致分析求两位同学来自同一个班级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com