精英家教网 > 初中数学 > 题目详情

【题目】桌子上放着背面完全相同的4张扑克牌,其中有一张大王,小明和小红玩“抽大王”游戏,两人各抽取一次(每次都不放回),抽到大王者获胜,小明先抽,小红后抽,求小红获胜的概率.(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果)

【答案】解:设大王为2,其余三张牌分别为4,5,5,画树状图得:
∵共有12种等可能的结果,小红获胜有3种情况,
∴P(小红获胜)= =
【解析】设大王为2,其余三张牌分别为4,5,5,根据题意画出树状图,然后由树状图求得所有等可能的结果与小红获胜的情况数,然后利用概率公式求解即可求得答案.
【考点精析】解答此题的关键在于理解列表法与树状图法的相关知识,掌握当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算(﹣5sin20°)0﹣(﹣2+|﹣24|+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图.(单位:升)

(1)求这7天内小申家每天用水量的平均数和中位数;
(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;
(3)请你根据统计图中的信息,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知半径为2的⊙O中,弦AC=2,弦AD=2 ,则∠COD的度数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角坐标系中,O为原点,A(0,4),点B在直线y=kx+6(k>0)上,若以O、A、B为顶点所作的直角三角形有且只有三个时,k的值为( )
A.
B.
C.3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M(4,0),以点M为圆心,2为半径的圆与x轴交于点A、B,已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.

(1)求点C的坐标,并画出抛物线的大致图象.
(2)点P为此抛物线对称轴上一个动点,求PC﹣PA的最大值.
(3)CE是过点C的⊙M的切线,E是切点,CE交OA于点D,求OE所在直线的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据要求进行计算:
(1)解方程: =﹣1;
(2)解不等式组:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以AB为直径的⊙O经过点C,过点C作⊙O的切线交AB的延长线于点P,D是⊙O上于点,且 = ,弦AD的延长线交切线PC于点E,连接AC.
(1)求∠E的度数;
(2)若⊙O的直径为5,sinP= ,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是等边三角形,点D是AC的中点,延长BC到E,使CE=CD.
(1)用尺规作图的方法,过点D作DM⊥BE,垂足为M(不写作法,只保留作图痕迹);
(2)若AB=2,求EM的长.

查看答案和解析>>

同步练习册答案