精英家教网 > 初中数学 > 题目详情

【题目】如图,的内切圆,点分别为上的点,且的切线,若的周长为边的长为.则的周长为( )

A. 15 B. 7.5 C. 10 D. 9

【答案】C

【解析】

根据切线长定理可以证得:BF+CH=BG+CG=BC,DE=DR+ER=DF+EH,根据△ADE的周长=AD+AE+DE=AD+AE+DF+EH=AF+AH=△ABC的周长-(BF+CH)=△ABC的周长-BC即可求解.

解:∵⊙I是△ABC的内切圆,设与AB,BC,AC的切点分别为:F,G,H,

∴BF=BG,CG=CH,DR=DF,ER=EH,

∴BF+CH=BG+CG=BC=5,

DE=DR+ER=DF+EH,

∴△ADE的周长=AD+AE+DE=AD+AE+DF+EH=AF+AH=△ABC的周长-BC-(BF+CH)=△ABC的周长-2BC=20-2×5=10.

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )

A. 随着抛掷次数的增加,正面朝上的频率越来越小

B. 当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的

C. 不同次数的试验,正面朝上的频率可能会不相同

D. 连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABC中,ABACDBC边上任意一点,EAC边上,且ADAE

1)若∠BAD40°,求∠EDC的度数;

2)若∠EDC15°,求∠BAD的度数;

3)根据上述两小题的答案,试探索∠EDC与∠BAD的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,斜坡AF的坡度为5:12,斜坡AF上一棵与水平面垂直的大树BD在阳光照射下,在斜坡上的影长BC=6.5米,此时光线与水平线恰好成30°角,求大树BD的高.(结果精确的0.1米,参考数据≈1.414,≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图①由4根火柴棍围成;图②由12根火柴棍围成;图③由24根火柴棍围成;…按此规律,则第⑥个图形由( )根火柴棍围成.

A. 60 B. 72 C. 84 D. 112

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求BC的长和四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,GBC中点,点EAD边上,且∠1=2

(1)求证:EAD中点;

(2)FCD延长线上一点,连接BF,且满足∠3=2,求证:CD=BF+DF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】鼎丰超市以固定进价一次性购进保温杯若干个,11月份按一定售价销售,销售额为1800元,为扩大销量,减少库存,12月份在11月份售价基础上打9折销售,结果销售量增加50个,销售额增加630元.

1)求鼎丰超市11月份这种保温杯的售价是多少元?

2)如果鼎丰超市11月份销售这种保温杯的利润为600元,那么该鼎丰超市12月份销售这种保温杯的利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

查看答案和解析>>

同步练习册答案