【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)求证:直线DE是⊙O的切线;
(2)若⊙O半径为1,BC=4,求图中阴影部分的面积.
【答案】(1)见解析;(2)图中阴影部分的面积为.
【解析】
(1)连接OE、OD,根据切线的性质得到∠OAC=90°,根据三角形中位线定理得到OE∥BC,证明△AOE≌△DOE(SAS),根据全等三角形的性质、切线的判定定理证明;
(2)求出AC,AE的长,得出∠AOD=120°,根据扇形的面积公式计算即可.
(1)证明:连接OE、OD,如图,
∵AC是⊙O的切线,
∴AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中
,
∴△AOE≌△DOE(SAS)
∴∠ODE=∠OAE=90°,
∴DE⊥OD,
∵OD为⊙O的半径,
∴DE为⊙O的切线;
(2)∵⊙O半径为1,
∴AB=2,
∵∠BAC=90°,BC=4,
∴∠C=30°,AC=,
∴∠B=60°,
∴∠AOD=2∠B=120°,
又∵点E是AC的中点,
∴AE=AC=,
∴图中阴影部分的面积=2S△AOE﹣S扇形AOD=2×××1﹣=﹣.
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长为1的网格中,A,B,D,E为格点,C为,的延长线的交点.
(Ⅰ)的结果为_________________.
(Ⅱ)若点R在线段上,点S在线段上,点T在线段上,且满足四边形为菱形,请在如图所示的网格中,用无刻度的直尺,画出菱形,并简要说明点R,S,T的位置是如何找到的(不要求证明)____________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点A的坐标为,点B的坐标为,且,.给出如下定义:若平面上存在一点P,使是以线段为斜边的直角三角形,则称点P为点A、点B的“直角点”.
(1)已知点A的坐标为.
①若点B的坐标为,在点、和中,是点A、点B的“直角点”的是_________;
②点B在x轴的正半轴上,且,当直线上存在点A、点B的“直角点”时,求b的取值范围;
(2)的半径为r,点为点、点的“直角点”,若使得与有交点,直接写出半径r的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=x﹣2与x轴交于点A,以OA为斜边在x轴的上方作等腰直角三角形OAB,将△OAB沿x轴向右平移,当点B落在直线y=x﹣2上时,则线段AB在平移过程中扫过部分的图形面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在边长为2的正方形ABCD中,P为AB上的一动点,E为AD中点,PE交CD延长线于Q,过E作EF⊥PQ交BC的延长线于F,则下列结论:①△APE≌△DQE;②PQ=EF;③当P为AB中点时,CF=;④若H为QC的中点,当P从A移动到B时,线段EH扫过的面积为1,其中正确的有( )
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC,∠BAC=60°,D为BC边上一点,(不与点B、C)重合,将线段AD绕点A逆时针旋转60°得到AE,连接EC,则∠ACE的度数是__________,线段AC,CD,CE之间的数量关系是_______________.
(2)2,在△ABC中,AB=AC,∠BAC=90°,D为BC边上一点(不与点B、C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,请写出∠ACE的度数及线段AD,BD,CD之间的数量关系,并说明理由.
(3)如图3,在Rt△DBC中,DB=3,DC=5,∠BDC=90°,若点A满足AB=AC,∠BAC=90°,请直接写出线段AD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知菱形中,,点为边上一个动点(不与点重合),点在边上,且,将线段绕着点逆时针旋转120°得线段,连接.
(1)依题意补全图形;
(2)求证:为等边三角形
(3)用等式表示线段的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E,H在矩形ABCD的AD边上,点F,G在BC边上,将矩形ABCD沿EF,GH折叠,使点B和点C落在AD边上同一点P处.折叠后,点A的对应点为点A',点D的对应点为点D',若∠FPG=90°,A'E=3,D'H=1,则矩形ABCD的周长等于_____.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com